Separation mechanism of ilmenite from titanaugite with mixed BHA/NaOL collector

2022 ◽  
Vol 176 ◽  
pp. 107363
Author(s):  
Qingyou Meng ◽  
Yuankai Xu ◽  
Zhitao Yuan ◽  
Xuan Zhao ◽  
Yusheng Du
Keyword(s):  
Author(s):  
Qian-Yu Wang ◽  
Zheng-Min Zhang ◽  
Lin Liu ◽  
Lu Bai ◽  
Rui-Ying Bao ◽  
...  

Poly(L-lactide) (PLA)/TiO2/Pt composite fiber membrane with internal porous channel structure is fabricated by skillfully tuning the breath figure mechanism and vapor induced phase separation mechanism with solute and solvent matching...


Open Physics ◽  
2019 ◽  
Vol 17 (1) ◽  
pp. 128-134 ◽  
Author(s):  
Wei Ma ◽  
Huanqin Li ◽  
Deden Witarsyah

Abstract Separation is the primary consideration in cloud computing security. A series of security and safety problems would arise if a separation mechanism is not deployed appropriately, thus affecting the confidence of cloud end-users. In this paper, together with characteristics of cloud computing, the separation issue in cloud computing has been analyzed from the perspective of information flow. The process of information flow in cloud computing systems is formalized to propose corresponding separation rules. These rules have been verified in this paper and it is shown that the rules conform to non-interference security, thus ensuring the security and practicability of the proposed rules.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 2054
Author(s):  
Loan T. T. Nguyen ◽  
Hang T. T. Nguyen ◽  
Thieng H. Le ◽  
Lan T. H. Nguyen ◽  
Hai Q. Nguyen ◽  
...  

In this study, nanocrystalline ZnNdxFe2−xO4 ferrites with x = 0.0, 0.01, 0.03 and 0.05 were fabricated and used as a catalyst for dye removal potential. The effect of Nd3+ ions substitution on the structural, optical and photo-Fenton activity of ZnNdxFe2−xO4 has been investigated. The addition of Nd3+ ions caused a decrease in the grain size of ferrites, the reduction of the optical bandgap energies and thus could be well exploited for the catalytic study. The photocatalytic activity of the ferrite samples was evaluated by the degradation of Rhodamine B (RhB) in the presence of H2O2 under visible light radiation. The results indicated that the ZnNdxFe2−xO4 samples exhibited higher removal efficiencies than the pure ZnFe2O4 ferrites. The highest degradation efficiency was 98.00%, attained after 210 min using the ZnNd0.03Fe1.97O4 sample. The enhanced photocatalytic activity of the ZnFe2O4 doped with Nd3+ is explained due to the efficient separation mechanism of photoinduced electron and holes. The effect of various factors (H2O2 oxidant concentration and catalyst loading) on the degradation of RhB dye was clarified.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Yin Song ◽  
Riley Sechrist ◽  
Hoang H. Nguyen ◽  
William Johnson ◽  
Darius Abramavicius ◽  
...  

AbstractPhotochemical reaction centers are the engines that drive photosynthesis. The reaction center from heliobacteria (HbRC) has been proposed to most closely resemble the common ancestor of photosynthetic reaction centers, motivating a detailed understanding of its structure-function relationship. The recent elucidation of the HbRC crystal structure motivates advanced spectroscopic studies of its excitonic structure and charge separation mechanism. We perform multispectral two-dimensional electronic spectroscopy of the HbRC and corresponding numerical simulations, resolving the electronic structure and testing and refining recent excitonic models. Through extensive examination of the kinetic data by lifetime density analysis and global target analysis, we reveal that charge separation proceeds via a single pathway in which the distinct A0 chlorophyll a pigment is the primary electron acceptor. In addition, we find strong delocalization of the charge separation intermediate. Our findings have general implications for the understanding of photosynthetic charge separation mechanisms, and how they might be tuned to achieve different functional goals.


Crystals ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 717
Author(s):  
Hassan Algadi ◽  
Ahmad Umar ◽  
Hasan Albargi ◽  
Turki Alsuwian ◽  
Sotirios Baskoutas

A low-cost and simple drop-casting method was used to fabricate a carbon nanodot (C-dot)/all-inorganic perovskite (CsPbBr3) nanosheet bilayer heterojunction photodetector on a SiO2/Si substrate. The C-dot/perovskite bilayer heterojunction photodetector shows a high performance with a responsivity (R) of 1.09 A/W, almost five times higher than that of a CsPbBr3-based photodetector (0.21 A/W). In addition, the hybrid photodetector exhibits a fast response speed of 1.318/1.342 µs and a highly stable photocurrent of 6.97 µA at 10 V bias voltage. These figures of merits are comparable with, or much better than, most reported perovskite heterojunction photodetectors. UV–Vis absorption and photoluminescent spectra measurements reveal that the C-dot/perovskite bilayer heterojunction has a band gap similar to the pure perovskite layer, confirming that the absorption and emission in the bilayer heterojunction is dominated by the top layer of the perovskite. Moreover, the emission intensity of the C-dot/perovskite bilayer heterojunction is less than that of the pure perovskite layer, indicating that a significant number of charges were extracted by the C-dot layer. The studied band alignment of the C-dots and perovskites in the dark and under emission reveals that the photodetector has a highly efficient charge separation mechanism at the C-dot/perovskite interface, where the recombination rate between photogenerated electrons and holes is significantly reduced. This highly efficient charge separation mechanism is the main reason behind the enhanced performance of the C-dot/perovskite bilayer heterojunction photodetector.


Lab on a Chip ◽  
2014 ◽  
Vol 14 (15) ◽  
pp. 2657-2665 ◽  
Author(s):  
William Beattie ◽  
Xi Qin ◽  
Lin Wang ◽  
Hongshen Ma

A microfluidic cell separation mechanism created using constrictions with adjustable size that can selectively capture and release cells, thereby enabling high throughput size and deformability based cell separation without clogging.


RSC Advances ◽  
2015 ◽  
Vol 5 (66) ◽  
pp. 53802-53808 ◽  
Author(s):  
Jian Li ◽  
Long Yan ◽  
Haoyu Li ◽  
Jianping Li ◽  
Fei Zha ◽  
...  

Superhydrophobic attapulgite coated mesh was used to separate oil/water mixtures efficiently. Besides, the separation mechanism was elaborated by interpreting the different states of water droplet on the surface before and during separation.


Author(s):  
Dinesh Kalyanasundaram ◽  
Andrea Schmidt ◽  
Pal Molian ◽  
Pranav Shrotriya

This paper presents a combined experimental and computational investigation of a novel material separation mechanism in polycrystalline diamond (PCD) substrates. A hybrid CO2 laser/waterjet (CO2-LWJ) machining system that combines a CO2 laser for localized heating and an abrasive-free waterjet to rapidly quench the heated area is utilized for cutting experiments on PCD substrates. Scanning electron microscopy (SEM) and micro-Raman spectrometry characterization performed on the cut surfaces show that cut surfaces were divided into two zones—a thin transformed zone near the top where the PCD grains have transformed to graphite and diamond-like carbon; and a fracture zone with the same composition as-received substrate. The experimental results indicate that the PCD substrates were cut through a “score and snap” mechanism—laser heating leads to localized damage and phase transformation of surface layers; and subsequently, stress fields developed due to constrained expansion of transformed material and waterjet quenching act on the laser made “score” to propagate crack through the thickness. Analytical solutions for thermal diffusion and force equilibrium are used to determine the temperature and stress fields in the PCD substrate during CO2-LWJ cutting. Fracture mechanics analysis of crack propagation is performed to demonstrate the feasibility of the “score and snap” mechanism for cutting of PCD substrates.


Sign in / Sign up

Export Citation Format

Share Document