scholarly journals Plasma enhanced inkjet printing of particle-free silver ink on polyester fabric for electronic devices

2021 ◽  
pp. 100103
Author(s):  
Thomas D.A. Jones ◽  
Andrew C. Hourd ◽  
Tang Chung Liu ◽  
Lu-Chiang Jia ◽  
Chia-Mei Lung ◽  
...  
Author(s):  
Atsuhiro Furuta ◽  
Kazuki Honjo ◽  
Jun Taniguchi

Abstract In recent years, flexible electronic devices such as printed electronics are gathering attention. To make flexible connect between one circuit device and another circuit device, interposer is necessary. However, most of conventional interposers are not flexible, because there are made of silicon or glass substrate. To solve this problem, we have been developed fabrication process of flexible interposer. Master mold was fabricated by photolithography process. First, SU-8 resist was coated on silicon substrate with 5μm thickness. Then, photolithography process was carried out to SU-8 resist. After development, pillar shape master molds with diameters of 10 or 20 μm were obtained. After release coating of master molds, hole patterns for vias were transferred by UV nanoimprint lithography. The obtained hole patterns were diameter of 10 μm or 20 μm, and pitch of 21.0 μm and 40.1 μm, respectively. Next, these holes were filled with silver ink by roll press method. Then, sintering process was carried out to evaporate of solvent of silver ink. After that, flexible interposer was obtained. As a result, we have been succeeded in filling the holes array with silver ink. Obtained interposer vias, which were silver region, were 8.2 μm diameter and 3.3 μm height, or 20.3 μm diameter and 5.3 μm height for 10 mm square size.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1504
Author(s):  
Hongmei Cao ◽  
Li Ai ◽  
Zhenming Yang ◽  
Yawei Zhu

Inkjet printing on polyester fabric displays versatile environmental advantages. One of the significant benefits of inkjet printing is a dramatic enhancement of the printing quality. In this study, xanthan gum—a bio-based thickening agent accompanied by several salts—was adopted for the pretreatment of polyester fabric aiming at improving the sharpness and color depth of inkjet printed patterns. The influences of four metal salts (NaCl, KCl, CaCl2 and MgCl2) on inkjet printing performance were studied. More importantly, a quantitative method for evaluating the sharpness of an inkjet printed pattern was established according to the characteristics of anisotropy and isotropy of diffusion and adsorption of ink droplets on a fiber surface. Results showed that xanthan gum along with a low dosage of bivalent salts can significantly improve the color depth (K/S value) and sharpness of the printed polyester fabrics. It is feasible to evaluate the sharpness of inkjet printed polyester fabrics using a five-stage system, selecting the inkjet ellipse coefficient (T) and inkjet ellipse area (S), which can provide a quantitative and rapid evaluation method for defining inkjet printing.


Materials ◽  
2020 ◽  
Vol 13 (3) ◽  
pp. 704 ◽  
Author(s):  
Vimanyu Beedasy ◽  
Patrick J. Smith

Inkjet printing has been used to produce a range of printed electronic devices, such as solar panels, sensors, and transistors. This article discusses inkjet printing and its employment in the field of printed electronics. First, printing as a field is introduced before focusing on inkjet printing. The materials that can be employed as inks are then introduced, leading to an overview of wetting, which explains the influences that determine print morphology. The article considers how the printing parameters can affect device performance and how one can account for these influences. The article concludes with a discussion on adhesion. The aim is to illustrate that the factors chosen in the fabrication process, such as dot spacing and sintering conditions, will influence the performance of the device.


2014 ◽  
Vol 31 (8) ◽  
pp. 737-742
Author(s):  
Seongcheol Mun ◽  
Mohammad Abu Hasan Khondoker ◽  
Abdullahil Kafy ◽  
M.d. Mohiuddin ◽  
Jaehwan Kim
Keyword(s):  

2016 ◽  
Vol 63 (1) ◽  
pp. 426-431 ◽  
Author(s):  
Christoph Sternkiker ◽  
Enrico Sowade ◽  
Kalyan Yoti Mitra ◽  
Ralf Zichner ◽  
Reinhard R. Baumann

2016 ◽  
Vol 674 ◽  
pp. 109-114 ◽  
Author(s):  
Jan Pospisil ◽  
Veronika Schmiedova ◽  
Oldrich Zmeskal ◽  
Viliam Vretenar ◽  
Peter Kotrusz

The paper deals with the study of optical and electrical properties of inkjet-printed graphene oxide (GO) layers, which can be used e.g. for the preparation of various types of electronic devices. To ensure stable inkjet printing conditions of GO solution, mixture was thoroughly stirred for 1 h at room temperature or sonicated in the bath for 30 min. The thicknesses of prepared layers were determined by spectroscopic ellipsometry and profilometry. An electrical conductivity of GO was increased by the multistep reduction (due to annealing) – the conductivity was changed by these processes about seven orders of magnitude (GO is an isolator and reduced GO is a conductor). For electrical and dielectric measurements, samples with GO and mixture of GO with PEDOT were prepared. All current-voltage characteristics have a diode character. From AC measurements the bulk electrical conductivity and geometric capacity of prepared layers were determined.


Micromachines ◽  
2021 ◽  
Vol 12 (8) ◽  
pp. 856
Author(s):  
Florian Janek ◽  
Nadine Eichhorn ◽  
Sascha Weser ◽  
Kerstin Gläser ◽  
Wolfgang Eberhardt ◽  
...  

This work presents an embedding process for ultrathin silicon chips in mechanically flexible solder mask resist and their electrical contacting by inkjet printing. Photosensitive solder mask resist is applied by conformal spray coating onto epoxy bonded ultrathin chips with a daisy chain layout. The contact pads are opened by photolithography using UV direct light exposure. Circular and rectangular openings of 90 µm and 130 µm diameter, respectively, edge length are realized. Commercial inks containing nanoparticular silver and gold are inkjet printed to form conductive tracks between daisy chain structures. Different numbers of ink layers are applied. The track resistances are characterized by needle probing. Silver ink shows low resistances only for multiple layers and 90 µm openings, while gold ink exhibits low resistances in the single-digit Ω-range for minimum two printed layers.


Author(s):  
Arshad Khan ◽  
Khalid Rahman ◽  
Shawkat Ali ◽  
Saleem Khan ◽  
Bo Wang ◽  
...  

Abstract Wearable electronic devices are evolving from current rigid configurations to flexible and ultimately stretchable structures. These emerging systems require soft circuits for connecting the various working units of the overall system. This paper presents fabrication of soft circuits by electrohydrodynamic (EHD) inkjet-printing technique. Multi-nozzle EHD printing head is employed for rapid fabrication of electric circuits on a wide set of materials, including glass substrate (rigid), flexible polyethylene terephthalate (PET) films, and stretchable thermoplastic polyurethane (TPU) films. To avoid the effects of substrate materials on the jettability, the proposed multi-nozzle head is equipped with integrated individual counter electrodes (electrodes are placed above the printing substrate). High-resolution circuits (50 ± 5 µm) with high electrical conductivity (0.6 Ω □−1) on soft substrate materials validate our well-controlled multi-nozzle EHD printing approach. The produced circuits showed excellent flexibility (bending radius ≈ 5 mm radius), high stretchability (strain ≈ 100%), and long-term mechanical stability (500 cycles at 30% strain). The concept is further demonstrated with a soft strain sensor based on a multi-nozzle EHD-printed circuit, employed for monitoring the human motion (finger bending), indicating the potential applications of these circuits in soft wearable electronic devices. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document