How ZrO2 nanoparticles improve the oil recovery by affecting the interfacial phenomena in the reservoir conditions?

2018 ◽  
Vol 252 ◽  
pp. 158-168 ◽  
Author(s):  
Hosein Rezvani ◽  
Ali Khalilnezhad ◽  
Parastoo Ganji ◽  
Yousef Kazemzadeh
2019 ◽  
Vol 6 (6) ◽  
pp. 181902 ◽  
Author(s):  
Junchen Lv ◽  
Yuan Chi ◽  
Changzhong Zhao ◽  
Yi Zhang ◽  
Hailin Mu

Reliable measurement of the CO 2 diffusion coefficient in consolidated oil-saturated porous media is critical for the design and performance of CO 2 -enhanced oil recovery (EOR) and carbon capture and storage (CCS) projects. A thorough experimental investigation of the supercritical CO 2 diffusion in n -decane-saturated Berea cores with permeabilities of 50 and 100 mD was conducted in this study at elevated pressure (10–25 MPa) and temperature (333.15–373.15 K), which simulated actual reservoir conditions. The supercritical CO 2 diffusion coefficients in the Berea cores were calculated by a model appropriate for diffusion in porous media based on Fick's Law. The results show that the supercritical CO 2 diffusion coefficient increases as the pressure, temperature and permeability increase. The supercritical CO 2 diffusion coefficient first increases slowly at 10 MPa and then grows significantly with increasing pressure. The impact of the pressure decreases at elevated temperature. The effect of permeability remains steady despite the temperature change during the experiments. The effect of gas state and porous media on the supercritical CO 2 diffusion coefficient was further discussed by comparing the results of this study with previous study. Based on the experimental results, an empirical correlation for supercritical CO 2 diffusion coefficient in n -decane-saturated porous media was developed. The experimental results contribute to the study of supercritical CO 2 diffusion in compact porous media.


2021 ◽  
Author(s):  
Baghir Alakbar Suleimanov ◽  
Sabina Jahangir Rzayeva ◽  
Ulviyya Tahir Akhmedova

Abstract Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-dicing agents along with significant amount of gases, mainly carbon dioxide. In early, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than non-gasified systems. The slippage effect determines the behavior of gas–liquid systems in the SR under reservoir conditions. Slippage occurs more easily when the pore channel has a smaller average radius. Therefore, in a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. The theoretical and practical foundations for the preparation of single-phase self-gasified biosystems and the implementation of the SR under reservoir conditions have been developedSR under reservoir conditions. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


2021 ◽  
pp. 91-107
Author(s):  
E. A. Turnaeva ◽  
E. A. Sidorovskaya ◽  
D. S. Adakhovskij ◽  
E. V. Kikireva ◽  
N. Yu. Tret'yakov ◽  
...  

Enhanced oil recovery in mature fields can be implemented using chemical flooding with the addition of surfactants using surfactant-polymer (SP) or alkaline-surfactant-polymer (ASP) flooding. Chemical flooding design is implemented taking into account reservoir conditions and composition of reservoir fluids. The surfactant in the oil-displacing formulation allows changing the rock wettability, reducing the interfacial tension, increasing the capillary number, and forming an oil emulsion, which provides a significant increase in the efficiency of oil displacement. The article is devoted with a comprehensive study of the formed emulsion phase as a stage of laboratory selection of surfactant for SP or ASP composition. In this work, the influence of aqueous phase salinity level and the surfactant concentration in the displacing solution on the characteristics of the resulting emulsion was studied. It was shown that, according to the characteristics of the emulsion, it is possible to determine the area of optimal salinity and the range of surfactant concentrations that provide increased oil displacement. The data received show the possibility of predicting the area of effectiveness of ASP and SP formulations based on the characteristics of the resulting emulsion.


Author(s):  
B. A. Suleimanov ◽  
S. J. Rzayeva ◽  
U. T. Akhmedova

Microbial enhanced oil recovery is considered to be one of the most promising methods of stimulating formation, contributing to a higher level of oil production from long-term fields. The injection of bioreagents into a reservoir results in the creation of oil-displacing agents along with a significant amount of gases, mainly carbon dioxide. Earlier, the authors failed to study the preparation of self-gasified biosystems and the implementation of the subcritical region (SR) under reservoir conditions. Gasified systems in the subcritical phase have better oil-displacing properties than nongasified systems. In a heterogeneous porous medium, the filtration profile of gasified liquids in the SR should be more uniform than for a degassed liquid. Based on experimental studies, the superior efficiency of oil displacement by gasified biosystems compared with degassed ones has been demonstrated. The possibility of efficient use of gasified hybrid biopolymer systems has been shown.


SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Yaoze Cheng ◽  
Yin Zhang ◽  
Abhijit Dandekar ◽  
Jiawei Li

Summary Shallow reservoirs on the Alaska North Slope (ANS), such as Ugnu and West Sak-Schrader Bluff, hold approximately 12 to 17 × 109 barrels of viscous oil. Because of the proximity of these reservoirs to the permafrost, feasible nonthermal enhanced oil recovery (EOR) methods are highly needed to exploit these oil resources. This study proposes three hybrid nonthermal EOR techniques, including high-salinity water (HSW) injection sequentially followed by low-salinity water (LSW) and low-salinity polymer (LSP) flooding (HSW-LSW-LSP), solvent-alternating-LSW flooding, and solvent-alternating-LSP flooding, to recover ANS viscous oils. The oil recovery performance of these hybrid EOR techniques has been evaluated by conducting coreflooding experiments. Additionally, constant composition expansion (CCE) tests, ζ potential determinations, and interfacial tension (IFT) measurements have been conducted to reveal the EOR mechanisms of the three proposed hybrid EOR techniques. Coreflooding experiments and IFT measurements have been conducted at reservoir conditions of 1,500 psi and 85°F, while CCE tests have been carried out at a reservoir temperature of 85°F. ζ potential determinations have been conducted at 14.7 psi and 77°F. The coreflooding experiment results have demonstrated that all of the three proposed hybrid EOR techniques could result in much better performance in reducing residual oil saturation than waterflooding and continuous solvent flooding in viscous oil reservoirs on ANS, implying better oil recovery potential. In particular, severe formation damage or blockage at the production end occurred when natural sand was used to prepare the sandpack column, indicating that the natural sand may have introduced some unknown constituents that may react with the injected solvent and polymer, resulting in a severe blocking issue. Our investigation on this is ongoing, and more detailed studies are being conducted in our laboratory. The CCE test results demonstrate that more solvent could be dissolved into the tested viscous oil with increasing pressure, simultaneously resulting in more oil swelling and viscosity reduction. At the desired reservoir conditions of 1,500 psi and 85°F, as much as 60 mol% of solvent could be dissolved into the ANS viscous oil, resulting in more than 31% oil swelling and 97% oil viscosity reduction. Thus, the obvious oil swelling and significant viscosity reduction resulting from solvent injection could lead to much better microscopic displacement efficiency during the solvent flooding. The ζ potential determination results illustrate that LSW resulted in more negative ζ potential than HSW on the interface between sand and water, indicating that lowering the salinity of injected brine could result in the sand surface being more water-wet, but adding polymer to the LSW could not further enhance the water wetness. The IFT measurement results show that the IFT between the tested ANS viscous oil and LSW is higher than that between the tested viscous oil and HSW, which conflicts with the commonly recognized IFT reduction effect by LSW flooding. Thus, the EOR theory of the LSW flooding in our proposed hybrid techniques may be attributed to low-salinity effects (LSEs) such as multi-ion exchange, expansion of electrical double layer, and salting-in effect, while water wetness enhancement may benefit the LSW flooding process to some extent. The LSP’s viscosity is much higher than the viscosities of LSW and solvent, so LSP injection could result in better mobility control in the tested viscous oil reservoirs, leading to improvement of macroscopic sweep efficiency. Combining these EOR theories, the proposed hybrid EOR techniques have the potential to significantly increase oil recovery in viscous oil reservoirs on ANS by maximizing the overall displacement efficiency.


SPE Journal ◽  
2021 ◽  
pp. 1-20
Author(s):  
Seunghwan Baek ◽  
I. Yucel Akkutlu

Summary Organic matters in source rocks store oil in significantly larger volume than that based on its pore volume (PV) due to so-called nanoconfinement effects. With pressure depletion and production, however, oil recovery is characteristically low because of the low compressibility of the fluid and amplified interaction with pore surface in the nanoporous material. For the additional recovery, CO2 injection has been widely adopted in shale gas and tight oil recovery over the last decades. But its supply and corrosion are often pointed out as drawbacks. In this study, we propose ethane injection as an alternative enhanced oil recovery (EOR) strategy for more productive oil production from tight unconventional reservoirs. Monte Carlo (MC) molecular simulation is used to reconstruct molecular configuration in pores under reservoir conditions. Further, molecular dynamics (MD) simulation provides the basis for understanding the recovery mechanism of in-situ fluids. These enable us to estimate thermodynamic recovery and the free energy associated with dissolution of injected gas. Primary oil recovery is typically below 15%, indicating that pressure depletion and fluid expansion are no longer effective recovery mechanisms. Ethane injection shows 5 to 20% higher recovery enhancement than CO2 injection. The superior performance is more pronounced, especially in nanopores, because oil in the smaller pores is richer in heavy components compared to the bulk fluids, and ethane molecules are more effective in displacing the heavy hydrocarbons. Analysis of the dissolution free energy confirms that introducing ethane into reservoirs is more favored and requires less energy for the enhanced recovery.


SPE Journal ◽  
2019 ◽  
Vol 24 (06) ◽  
pp. 2889-2910 ◽  
Author(s):  
Pål Østebø Andersen ◽  
Dhruvit Satishchandra Berawala

Summary Numerical and analytical 1D solutions are presented to interpret the link between geochemical alterations and creep compaction (compaction under constant effective stress) in chalk cores. Chemically reactive flow enhancing chalk compaction is of significant importance for enhanced oil recovery (EOR), compaction, and subsidence in North Sea chalk reservoirs. The focus of this study is on Ca-, Mg-, and NaCl brines that interact with the chalk by the dissolution of calcite and the precipitation of magnesite. An explicit analytical solution is derived for the steady–state ion and dissolution–rate distributions at a given injected composition and injection rate. A mathematical description of creep compaction is proposed on the basis of applied affective stresses and rock ability to carry these stresses as a function of porosity. The reaction and compaction models are then coupled as follows: The compaction rate is assumed, which is enhanced by the dissolution rate, which can vary spatially. Furthermore, the solid volume changes by mineral dissolution and precipitation. Brine–dependent and nonuniform compaction is hence built into the model by means of the dissolution–rate distribution. The model is validated and parameterized against data from a total of 22 core samples from two chalk types (Åalborg and Liege) where reactive and inert brines were injected from ambient to Ekofisk–reservoir conditions (130°C). Experimentally measured effluent concentrations, distributions in mineralogy after flooding, and creep–compaction behavior were matched. Our model is the first to link a vast set of data on this subject and predict performance under new experimental conditions. This also represents a first step in upscaling such results from the laboratory toward the field. Our interpretations indicate that the two chalk types would respond differently chemically and by compaction to changes in the concentration and injection rate. Brines injected through Liege chalk appeared to approach stable oversaturation, while in Åalborg, the equilibrium condition was in agreement with geochemical calculations.


Energies ◽  
2020 ◽  
Vol 13 (23) ◽  
pp. 6456
Author(s):  
Ewa Knapik ◽  
Katarzyna Chruszcz-Lipska

Worldwide experiences related to geological CO2 storage show that the process of the injection of carbon dioxide into depleted oil reservoirs (CCS-EOR, Carbon Capture and Storage—Enhanced Oil Recovery) is highly profitable. The injection of CO2 will allow an increasing recovery factor (thus increasing CCS process profitability) and revitalize mature reservoirs, which may lead to oil spills due to pressure buildups. In Poland, such a solution has not yet been implemented in the industry. This work provides additional data for analysis of the possibility of the CCS-EOR method’s implementation for three potential clusters of Polish oil reservoirs located at a short distance one from another. The aim of the work was to examine the properties of reservoir fluids for these selected oil reservoirs in order to assure a better understanding of the physicochemical phenomena that accompany the gas injection process. The chemical composition of oils was determined by gas chromatography. All tested oils represent a medium black oil type with the density ranging from 795 to 843 g/L and the viscosity at 313 K, varying from 1.95 to 5.04 mm/s. The content of heavier components C25+ is up to 17 wt. %. CO2–oil MMP (Minimum Miscibility Pressure) was calculated in a CHEMCAD simulator using the Soave–Redlich–Kwong equation of state (SRK EoS). The oil composition was defined as a mixture of n-alkanes. Relatively low MMP values (ca. 8.3 MPa for all tested oils at 313 K) indicate a high potential of the EOR method, and make this geological CO2 storage form more attractive to the industry. For reservoir brines, the content of the main ions was experimentally measured and CO2 solubility under reservoir conditions was calculated. The reservoir brines showed a significant variation in properties with total dissolved solids contents varying from 17.5 to 378 g/L. CO2 solubility in brines depends on reservoir conditions and brine chemistry. The highest calculated CO2 solubility is 1.79 mol/kg, which suggest possible CO2 storage in aquifers.


SPE Journal ◽  
2013 ◽  
Vol 18 (02) ◽  
pp. 319-330 ◽  
Author(s):  
Dai Makimura ◽  
Makoto Kunieda ◽  
Yunfeng Liang ◽  
Toshifumi Matsuoka ◽  
Satoru Takahashi ◽  
...  

Summary Molecular simulation is a powerful technique for obtaining thermodynamic properties of a system of given composition at a specific temperature and pressure, and it enables us to visualize microscopic phenomena. In this work, we used simulations to study interfacial phenomena and phase equilibria, which are important to CO2-enhanced oil recovery (EOR). We conducted molecular dynamics (MD) simulation of an oil/water interface in the presence of CO2. It was found that CO2 was enriched at the interfacial region under all thermal conditions. Whereas the oil/water interfacial tension (IFT) increases with pressure, CO2 reduces the IFT by approximately one-third at low pressure and one-half at higher pressure. Further analysis on the basis of our MD trajectories shows that the O=C=O bonds to the water with a “T-shaped” structure, which provides the mechanism for CO2 enrichment at the oil/water interface. The residual nonnegligible IFT at high pressures implies that the connate or injected water in a reservoir strongly influences the transport of CO2/oil solutes in that reservoir. We used Gibbs ensemble Monte Carlo (GEMC) simulation to compute phase equilibria and obtain ternary phase diagrams of such systems as CO2/n-butane/N2 and CO2/n-butane/n-decane. Simulating hydrocarbon fluids with a mixture of CO2 and N2 enables us to evaluate the effects of N2 impurity on CO2-EOR. It also enables us to study the phase behavior, which is routinely used to evaluate the minimum miscibility pressure (MMP). We chose these two systems because experimental data are available for them. Our calculated phase equilibria are in fair agreement with experiments. We also discuss possible ways to improve the predictive capability for CO2/hydrocarbon systems. GEMC and MD simulations of systems with heavier hydrocarbons are straightforward and enable us to combine molecular-level thinking with process considerations in CO2-EOR.


Sign in / Sign up

Export Citation Format

Share Document