Study on the adsorption of dyestuffs with different properties by sludge-rice husk biochar: Adsorption capacity, isotherm, kinetic, thermodynamics and mechanism

2019 ◽  
Vol 285 ◽  
pp. 62-74 ◽  
Author(s):  
Si Chen ◽  
Chaoxian Qin ◽  
Teng Wang ◽  
Fangyuan Chen ◽  
Xuli Li ◽  
...  
2019 ◽  
Vol 19 (11) ◽  
pp. 7035-7043 ◽  
Author(s):  
Tong Ouyang ◽  
Jidan Tang ◽  
Fang Liu ◽  
Chang-Tang Chang

The objective of this paper is to study the removal of Cr(VI) in aqueous solution by using a new graphene oxide-coated rice husk biochar composite (GO-RHB). GO-RHB is a synthetic material having a porous structure with lots of oxygen-containing functional groups and a large surface area that provide effective adsorption sites. Experiments showed that GO-RHB had higher adsorption capacity under acidic than under alkaline conditions. At pH of 2, GO-RHB has the maximum adsorption capacity(48.8 mg g−1). Equilibrium data obtained by fitting with the Langmuir and Freundlich models indicate that the reaction process was monolayer adsorption. The adsorption of Cr(VI) followed the pseudo-second-order kinetic model that illustrates chemical adsorption. Intraparticlediffusion studies further revealed that film diffusion was taking place. Moreover, the results of thermodynamics showed that the adsorption process was endothermic and spontaneous in nature. The removal mechanism of Cr(VI) was also explained in detail. The prepared adsorbent is highly efficient and might be useful than many other conventional adsorbent used for the removal of Cr(VI) from wastewater.


2018 ◽  
Vol 5 (5) ◽  
pp. 172382 ◽  
Author(s):  
Wei Guo ◽  
Shujuan Wang ◽  
Yunkai Wang ◽  
Shaoyong Lu ◽  
Yue Gao

A magnetically modified rice husk biochar (MBC) was successfully prepared by a hydrothermal method from original biochar (BC) and subsequently used to remove phenanthrene (PHE) from aqueous solutions. The porosity, specific surface area and hydrophobicity of BC were significantly improved (approx. two times) after magnetic modification. The adsorption data fitted well to pseudo-second-order kinetic and Langmuir models. Compared with BC, MBC had a faster adsorption rate and higher adsorption capacity of PHE. The adsorption equilibrium for PHE on MBC was achieved within 1.0 h. The maximum adsorption capacity of PHE on MBC was 97.6 mg g −1 based on the analysis of the Sips model, which was significantly higher than that of other sources of BCs. The adsorption mechanism of the two BCs was mainly attributed to the action of surface functional groups and π–π-conjugated reactions. The adsorption of PHE on MBC mainly occurred in the functional groups of C–O and Fe 3 O 4 , but that on BC was mainly in the functional groups of –OH, N–H, C=C and C–O.


2020 ◽  
Vol 2 (7) ◽  
Author(s):  
Fabiane Figueiredo Severo ◽  
Leandro Souza da Silva ◽  
Janielly Silva Costa Moscôso ◽  
Qamar Sarfaraz ◽  
Luiz Fernando Rodrigues Júnior ◽  
...  

Author(s):  
Alice Ndekei ◽  
Muigai- Gitita ◽  
Njagi Njomo ◽  
Damaris Mbui

The present study aimed to use chemically activated rice husk biochar as an adsorbent for the removal of heavy metals from an aqueous solution. A series of the Rice husk biochar (RHB) samples were produced at different temperatures, as follows: 300, 400, 500, 600, and 700℃ for 2 hours each through pyrolysis process in Dalhan Scientific Muffle Furnace. The chemically treated rice husk biochar synthesized at 500℃ was used as potential char for removal of Cu(II) and Pb(II) from aqueous solutions. The sorption of these metal ions from an aqueous solution was determined after adsorption using Flame Atomic Absorption Spectrophotometry (AAS). The Shimadzu IR Affinity Fourier Transform Infra-Red Spectroscopy (FT-IR) was used for the characterization of rice husk char and it revealed the presence of OH, C=O, and COO- bonds which are responsible for heavy metal ions adsorption through chemisorption. The effect of adsorption parameters was determined that is; pyrolysis temperature which was found to be 500℃, the optimal contact time for the metal ions Cu (II) and Pb (II) was found to be 60 minutes, the optimum dosage was 0.250 g and optimum initial concentration was 2 mg/l.  The kinetics were tested against pseudo-first order and pseudo-second order model as well Langmuir and Freundlich isotherms. Cu(II), adsorption process followed Pseudo-second order kinetics with regression coefficient (R2) 0.9942 and Langmuir isotherm model with R2 0.9895. For Pb(II), adsorption capacity followed Pseudo-second order kinetics with regression coefficient (R2) 0.99991 and Freundlich isotherm model with R2 0.96675 optimum equilibrium adsorption capacity of 0.5274 mg/g.


2021 ◽  
Vol 11 (1) ◽  
pp. 30-44
Author(s):  
Vo Thi Minh Thao ◽  
Nguyen Thị Canh ◽  
Nguyen Lu Nguyet Hang ◽  
Nguyen Minh Khanh ◽  
Nguyen Ngoc Phi ◽  
...  

This study aims to investigate the adsorption capacity of ammonium NH4+, nitrite NO2- and nitrate NO3- onto rice husk biochar (RHB) obtained from 550 °C pyrolysis temperature in the context of using low-cost absorbent for recirculating aquaculture system (RAS). Raw RHB at its original size 5–8 mm has been choosen for testing its adsorption capacity as well as several key material properties (pHPZC, surface area, and elemental analysis). From surface functional group analysis, there existed the O–H group (at frequency 3443 cm-1), –CH3 (2360 cm-1), and either –C=O or C=C group (in the range of frequency 1600–1650 cm-1) as well as –COOH (1456 cm‒1) that helped enhance chemical adsorption. The experimental adsorption data has been roughly consistent with Langmuir and Freundlich models that used to calculate the maximum saturated monolayer adsorption capacity Q0max of ammonium, nitrite, and nitrate were 0.1003, 0.2477, and 0.1290 mg/g respectively. Therefore, RHB could be a potential candidate for biofilter application in both targets cost-efficient and sustainable that worth applied at scale.


2019 ◽  
Vol 8 (4) ◽  
pp. 6864-6870

Hydrogen sulfide (H2S) is a naturally occurring component found during microbial disintegration and processing of natural gas & oil which can cause wellbeing and condition issue if being discharged into a climate at high fixation. Activated carbon which cost a lot in manufacturing is used as an adsorbent for removing these hazardous gases. As an alternative, the abundance waste of biomass available can be converted into good use. Biochar is one of the most practical and promising adsorbents that shows incredible potential as an adsorbent for the expulsion of contaminants in wastewater and gas treatment. This study covered on the characteristics and adsorption performance of two adsorbents Activated Rice Husk Biochar (RHB) and Rice Husk Hydrogel Composite (RH-HBC) on hydrogen sulfide. RHB is prepared by treating grinded rice husk biochar using aqueous Zinc Chloride (ZnCl2 ) and hydrochloric acid (HCl) solution to increase the size of pores of active sites and remove the impurities present in on the adsorbents. Polymerization is conducted by using initiator (ammonium persulfate, APS), monomer (acrylamide, AAm) and crosslinker (N,N'-methylenebisacrylamide,MBA) to create treated hydrogel biochar (RH-HBC). The adsorption performance is done to evaluate the effect of sorbent weight (20 g, 25 g, 30 g), H2S gas flow rate (200 L/hr, 150 L/hr, 100 L/hr) and temperature (30℃, 50℃, 70℃). RHB shows better porosity compared to RH-HBC where it has a higher surface area (222.85m2/g) compared to RH-HBC (8.68m2/g). While the presence of alkene group C=C in RH-HBC gives more stability to withstand high temperature compared to RHB. From the result, it can be concluded that the increased the sorbent weight, give an increased in adsorption capacity. When increased the gas flow rate, it gives a shorter contact time between gas and adsorbent which result in less adsorption capacity. RH-HBC give longest breakthrough time and highest adsorption capacity compared with RHB in all experiment.


Author(s):  
Daljit Singh KARAM ◽  
Prakash NAGABOVANALLI ◽  
Keeren Sundara RAJOO ◽  
Che Fauziah ISHAK ◽  
Arifin ABDU ◽  
...  

2015 ◽  
Vol 32 ◽  
pp. 178-186 ◽  
Author(s):  
Lakshmi Prasanna Lingamdinne ◽  
Hoon Roh ◽  
Yu-Lim Choi ◽  
Janardhan Reddy Koduru ◽  
Jae-Kyu Yang ◽  
...  

2015 ◽  
Vol 5 (1) ◽  
pp. 45
Author(s):  
Tchuifon Tchuifon Donald Raoul ◽  
Nche George Ndifor-Angwafor ◽  
Ngakou Sadeu Christian ◽  
Kamgaing Théophile ◽  
Ngomo Horace Manga ◽  
...  

<p>The present study is based on the adsorption of cadmium (II) ions on rice husk and egussi peeling, unmodified and modified with nitric acid in aqueous solution, using batch technique. It was carried out as a function of contact time, dosage, pH and initial concentration. The equilibrium time was achieved within 25 minutes for unmodified rice husk (Glu NT) and 20 minutes for unmodified egussi peeling (Cuc NT) with an adsorbed quantity of 13.18 mg/g. In the case of modified materials, we obtained 15 minutes for modified rice husk (Glu HNO3) and 10 minutes for modified egussi peeling (Cuc HNO3) with an adsorbed quantity of 18.77 mg/g. The maximum biosorption occurred at pH 5.5 for all biosorbents. The adsorbent mass for maximum adsorption was 0.4 g giving an adsorption capacity of 62.02 % for unmodified adsorbents. In the case of modified adsorbents, the minimal mass at which maximum adsorption occurred was 0.4 g giving an adsorption capacity of 98.33 % and 0.6 g giving an adsorption capacity of 98.33 % for modified rice husk and egussi peeling respectively. The adsorbent/adsorbate equilibrium was well described by the pseudo-second order kinetic model and by Langmuir’s and Freundlich adsorption model. This models showed that the adsorption of cadmium (II) is a chemisorption process.</p>


Sign in / Sign up

Export Citation Format

Share Document