Effect of heat treatment temperature on the mechanical properties of low-temperature high strength maraging steel

2014 ◽  
Vol 601 ◽  
pp. 1-6 ◽  
Author(s):  
Hua Hou ◽  
Haifeng Li ◽  
Yuchun Jin ◽  
Xinran Wang ◽  
Zhiqin Wen
2020 ◽  
Vol 405 ◽  
pp. 133-138
Author(s):  
Ludmila Kučerová ◽  
Andrea Jandová ◽  
Ivana Zetková

Maraging steel is an iron-nickel steel alloy, which achieves very good material properties like high toughness, hardness, good weldability, high strength and dimensional stability during heat treatment. In this work, maraging steel 18Ni-300 was manufactured by selective laser melting. It is a method of additive manufacturing (AM) technology, which produces prototypes and functional parts. Sample of additively manufactured and conventional steel with the same chemical composition were tested after in three different states – heat treated (as-built/as-received), solution annealed and precipitation hardened. Resulting microstructures were analysed by light and scanning electron microscopy and mechanical properties were obtained by hardness measurement and tensile test. Cellular martensitic microstructures were observed in additively manufactured samples and conventional maraging steel consisted of lath martensitic microstructures. Very similar mechanical properties were obtained for both steels after the application of the same heat treatment. Ultimate tensile strengths reached 839 – 900 MPa for samples without heat treatment and heat treated by solution annealing, the samples after precipitation hardening had tensile strengths of 1577 – 1711 MPa.


2020 ◽  
pp. 0734242X2095740
Author(s):  
Haijun Bi ◽  
Huabing Zhu ◽  
Lei Zu ◽  
Yong Gao ◽  
Song Gao ◽  
...  

Spent lithium iron phosphate (LFP) batteries contain abundant strategic lithium resources and are thus considered attractive secondary lithium sources. However, these batteries may contaminate the environment because they contain hazardous materials. In this work, a novel process involving low-temperature heat treatment is used as an alternative pretreatment method for recycling spent LFP batteries. When the temperature reaches 300°C, the dissociation effect of the anode material gradually improves with heat treatment time. At the heat treatment time of 120 minutes, an electrode material can be dissociated. The extension of heat treatment time has a minimal effect on quality loss. The physicochemical changes in thermally treated solid cathode and anode materials are examined through scanning electron microscopy with energy-dispersive X-ray spectroscopy. The heat treatment results in the complete separation of the materials from aluminium foil without contamination. The change in heat treatment temperature has a small effect on the quality of LFP material shedding. When the heat treatment temperature reaches 300°C and the time reaches 120 minutes, heat treatment time increases, and the yield of each particle size is stable and basically unchanged. The method can be scaled up and may reduce environmental pollution due to waste LFP batteries.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1403 ◽  
Author(s):  
Lifen Tong ◽  
Xiting Lei ◽  
Guangyao Yang ◽  
Xiaobo Liu

A novel poly(arylene ether nitrile) terminated with hydroxyl groups (PEN–OH) was synthesized successfully. The effects of heat-treatment temperature on the thermal properties, mechanical properties, and dielectric properties of the PEN–OH films were studied in detail. Due to the cross-linking reaction occurring, at high temperature, among the nitrile groups on the side of the PEN–OH main chain to form a structurally stable triazine ring, the structure of materials changes from a linear structure to a bulk structure. Thus, the thermal properties and mechanical properties were improved. In addition, the occurrence of cross-linking reactions can reduce the polar groups in the material, leading to the decrease of dielectric constant. As the heat-treatment temperature increased, the glass-transition temperature increased from 180.6 °C to 203.6 °C, and the dielectric constant decreased from 3.4 to 2.8 at 1 MHz. Proper temperature heat-treatment could improve the tensile strength, as well as the elongation, at the break of the PEN–OH films. Moreover, because of the excellent adhesive property of PEN–OH to copper foil, a double-layer flexible copper clad laminate (FCCL) without any adhesives based on PEN–OH was prepared by a simple hot-press method, which possessed high peel strength with 1.01 N/mm. Therefore, the PEN–OH has potential applications in the electronic field.


10.30544/293 ◽  
2017 ◽  
Vol 23 (2) ◽  
pp. 143-152
Author(s):  
Mohammad Davari ◽  
Mehdi Mansouri Hasan Abadi

In the present study, the effect of intercritical heat treatment temperature on the tensile properties and work hardening behavior of ferritic-martensitic dual-phase steel have been investigated utilizing tensile test, microhardness measurement and microscopic observation. Plain carbon steel sheet with a thickness of 2 mm was heat treated at 760, 780, 800, 820 and 840 °C intercritical temperatures. The results showed that martensite volume fraction (Vm) increases from 32 to 81%with increasing temperature from 760 to 840 °C. The mechanical properties of samples were examined by tensile and microhardness tests. The results revealed that yield strength was increased linearly with the increase in Vm, but the ultimate strength was increased up to 55% Vm and then decreased afterward. Analyzing the work hardening behavior in term of Hollomon equation showed that in samples with less than 55% Vm, the work hardening took place in one stage and the work hardening exponent increased with increasing Vm. More than one stage was observed in the work hardening behavior when Vm was increased. The results of microhardness test showed that microhardness of the martensite is decreased by increase in heat treatment temperature while the ferrite microhardness is nearly constant for all heat-treated samples.


Sign in / Sign up

Export Citation Format

Share Document