Structural, surface morphology and optical properties of sputter-coated CaCu 3 Ti 4 O 12 thin film: Influence of RF magnetron sputtering power

2017 ◽  
Vol 66 ◽  
pp. 157-161 ◽  
Author(s):  
Mohsen Ahmadipour ◽  
Siti Nursalma Ayub ◽  
Mohd Fadzil Ain ◽  
Zainal Arifin Ahmad
2011 ◽  
Vol 25 (20) ◽  
pp. 2741-2749 ◽  
Author(s):  
J. C. ZHOU ◽  
L. LI ◽  
L. Y. RONG ◽  
B. X. ZHAO ◽  
Y. M. CHEN ◽  
...  

High transparency and conductivity of transparent conducting oxide thin film are very important for improving the efficiency of solar cells. ZnO thin film is a better candidate for transparent conductive layer of solar cell. N-type ZnO thin films were prepared by radio-frequency magnetron sputtering on glass substrates. ZnO thin films underwent annealing treatment after deposition. The influence of the sputtering power on the surface morphology, the electrical and optical properties were studied by AFM, XRD, UV2450 and HMS-3000. The experimental results indicate that the crystal quality of ZnO thin film is improved and all films show higher c-axis orientation with increasing sputtering power from 50 to 125 W. The average transparency of ZnO thin films is higher than 90% in the range of 400–900 nm between the sputtering power of 50–100 W. After the rapid thermal annealing at 550°C for 300 s under N2 ambient, the minimum resistivity reach to 10-2Ω⋅ cm .


2019 ◽  
Vol 24 (6) ◽  
pp. 93
Author(s):  
Azhar Mohammed Abed1 ◽  
, Abdulhussain K. Elttayef2 ◽  
Khalid Hamdi Razeg1

Zinc sulfide (ZnS) thin films were deposited on glass substrate with different thickness by radiofrequency (RF) magnetron sputtering technique, and deals with effect of thickness on the optical and structural properties. The structure, surface morphology and optical properties are investigated by x-ray diffraction (XRD), atomic forces microscopy (AFM), scanning electron microscopy, and UV-visible spectrophotometer.  The result of XRD show that ZnS thin film exhibited cubic structure with strong peaks at (111) as highly preferential orientation. The maximum particle size of films was found to be 14.4 at thickness 868nm. SEM image show that the shape of grain is like spherical. The result of AFM shows that the surface roughness decrease with increasing in film thickness from (6.19 to 1.45)nm. The result of UV-visible suggests that transmittance increasing with increases in film thickness, the value maximum of ZnS transmission was 87.82%  at thickness 868nm, can be very much useful in the field of solar cell and optical sensor .   http://dx.doi.org/10.25130/tjps.24.2019.113


2021 ◽  
Vol 03 (03) ◽  
pp. 103-110
Author(s):  
Dawood S. ALI ◽  
Omar M. DAWOOD

In this work, RF magnetron sputtering plasma for the deposition of Ti6Al4V thin film has been investigated by using optical emission spectroscopy at argon working pressure of 5×10-3 mbar. The emission lines intensity of the plasma were measured using a spectrometer, and the identify peaks within the selective range of patterns and matched with the standard data from the NIST website to measure the plasma parameters. Since the sputtering power plays an important role to the growth of thin film, so the effect of sputtering power of 50, 75, 100, 125 and 150Watt has been studied on produced plasma parameters. The size of Ti6Al4V sputtering target was 50mm in diameter. The argon gas flow was 40 s ccm. One can observe that the lines intensities increased with increasing the sputtering power. The plasma temperature increases from 1.86 to 2.15 eV, while its density increased from 2.69 ×1018 to 2.94 ×1018 cm-3with increasing the rf power from 50 to 150 W, which effect on sputtering rate.


2013 ◽  
Vol 20 (01) ◽  
pp. 1350008 ◽  
Author(s):  
M. AMIRHOSEINY ◽  
Z. HASSAN ◽  
S. S. NG ◽  
G. ALAHYARIZADEH

The structure and optical properties of InN thin film grown on 6H-SiC by reactive radio frequency magnetron sputtering were investigated. X-ray diffraction measurement shows that the deposited InN film has (101) preferred growth orientation and wurtzite structure. Atomic force microscopy results reveal smooth surface with root-mean-square roughness around 3.3 nm. One Raman-active optical phonon of E2(high) and two Raman- and infrared-active modes of A1(LO) and E1(TO) of the wurtzite InN are clearly observed at 488.7, 582.7 and 486 cm-1, respectively. These results leading to conclude that the wurtzite InN thin film with (101) preferred growth orientation was successfully grown on 6H-SiC substrate.


2014 ◽  
Vol 1053 ◽  
pp. 325-331
Author(s):  
Yang Zhou ◽  
Hong Fang Zheng ◽  
Guang Zhao ◽  
Man Li ◽  
Bao Ting Liu

ZnO thin film has been fabricated on sapphire substrate (0001) using RF magnetron sputtering at room temperature. The influence of sputtering power ranging from 10 W to 70 W on the microstructural and optical properties of ZnO films is investigated by atomic force microscopy (AFM), X-ray diffraction (XRD), ultraviolet-visible spectrophotometer. The AFM results show that with the increase of sputtering power, the size of ZnO crystalline increases first, then decrease and the maximum grain size occurs at 50 W. The XRD measurements indicate that the ZnO films with wurtzite structure are highly c-axis orientation and the film fabricated at 50 W has the best crystalline quality. Optical transmission spectra of the ZnO samples demonstrate that the ZnO film obtained at 50 W has the higher average transmission (above 90%) in the visible-light region and its optical band gap is 3.26 eV.


Sign in / Sign up

Export Citation Format

Share Document