Hyaluronic acid-functionalized Halloysite nanotubes for targeted drug delivery to CD44-overexpressing cancer cells

2021 ◽  
pp. 102682
Author(s):  
Xiaoyun Mo ◽  
Fuling Wu ◽  
Ying Li ◽  
Xiulan Cai
Nanoscale ◽  
2013 ◽  
Vol 5 (1) ◽  
pp. 178-183 ◽  
Author(s):  
Meihua Yu ◽  
Siddharth Jambhrunkar ◽  
Peter Thorn ◽  
Jiezhong Chen ◽  
Wenyi Gu ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
pp. 2-14
Author(s):  
Sahil Kumar ◽  
Bandna Sharma ◽  
Kiran Thakur ◽  
Tilak R. Bhardwaj ◽  
Deo N. Prasad ◽  
...  

Background: Many efforts have been explored in the last decade to treat colon cancer but nanoparticulate drug delivery systems are making a vital contribution in the improvement of drug delivery to colon cancer cells. Objective: In this review, we attempt to highlight recent advancements in the development of novel drug delivery systems of nanoparticles for the targeted drug delivery to colon. Polymers like Epithelial Cell Adhesion Molecule (EpCAM) aptamer chitosan, Hyaluronic Acid (HA), Chitosan (CS)– Carboxymethyl Starch (CMS), silsesquioxane capped mesoporous silica, Near IR (NIR) fluorescent Human Serum Albumin (HAS), poly(ethylene glycol)-conjugated hyaluronic acid etc. have been discussed by employing various anticancer drugs like doxorubicin, oxaliplatin, paclitaxel, 5-fluorouracil etc. Conclusion: These novel drug delivery systems have been determined to be more efficacious in terms of stability, sustained and targeted drug delivery, therapeutic efficacy, improved bioavailability and enhanced anticancer activity.


2016 ◽  
Vol 17 (1-2) ◽  
Author(s):  
Julia Modrejewski ◽  
Johanna-Gabriela Walter ◽  
Imme Kretschmer ◽  
Evren Kemal ◽  
Mark Green ◽  
...  

AbstractThe purpose of this study was to develop a model system for targeted drug delivery. This system should enable targeted drug release at a certain tissue in the body. In conventional drug delivery systems, drugs are often delivered unspecifically resulting in unwarranted adverse effects. To circumvent this problem, there is an increasing demand for the development of intelligent drug delivery systems allowing a tissue-specific mode of delivery. Within this study, nanoparticles consisting of two biocompatible polymers are used. Because of their small size, nanoparticles are well-suited for effective drug delivery. The small size affects their movement through cell and tissue barriers. Their cellular uptake is easier when compared to larger drug delivery systems. Paclitaxel was encapsulated into the nanoparticles as a model drug, and to achieve specific targeting an aptamer directed against lung cancer cells was coupled to the nanoparticles surface. Nanoparticles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), fourier transform infrared spectroscopy (FTIR), and nanotracking analysis (NTA). Also their surface charge was characterized from ζ-potential measurements. Their preparation was optimized and subsequently specificity of drug-loaded and aptamer-functionalized nanoparticles was investigated using lung cancer cells.


2021 ◽  
Vol 104 ◽  
pp. 93-105
Author(s):  
Sikhumbuzo Charles Kunene ◽  
Kuen-Song Lin ◽  
Meng-Tzu Weng ◽  
Maria Janina Carrera Espinoza ◽  
Chun-Ming Wu

Author(s):  
Trong-Nghia Le ◽  
Chin-Jung Lin ◽  
Yen Chen Shen ◽  
Kuan-Yu Lin ◽  
Cheng-Kang Lee ◽  
...  

ACS Omega ◽  
2019 ◽  
Vol 4 (5) ◽  
pp. 9284-9293 ◽  
Author(s):  
Nilkamal Pramanik ◽  
Santhalakshmi Ranganathan ◽  
Sunaina Rao ◽  
Kaushik Suneet ◽  
Shilpee Jain ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document