Quarry dust as river sand replacement in cement masonry blocks: effect on mechanical and durability characteristics

Materialia ◽  
2022 ◽  
pp. 101324
Author(s):  
Kosalya Sundaralingam ◽  
Arvinthan Peiris ◽  
Arulanantham Anburuvel ◽  
Navaratnarajah Sathiparan
Keyword(s):  

Waterway sand and pit sand are the most normally utilized fine aggregates for concrete creation in many parts of the world. Huge scale extraction of these materials presents genuine ecological risk in numerous parts of the nation. Aside from the ecological danger, there still exists the issue of intense lack in many regions. In this way, substitute material in place of river sand for concrete production should be considered. The paper means to examine the compressive and split tensile qualities of concrete produced using quarry residue, sand, and a blend of sand and quarry dust. The experimentation is absolutely research facility based. A total of 60 concrete cubes of size 150 mm x 150 mm x 150 mm, and 60 cylinders 150 mm in diameter and 300 mm deep, conforming to M50 grade were casted. All the samples were cured and tested with a steady water/concrete proportion of 0.31. Out of the 60 blocks cast, 20 each were made out of natural river sand, quarry dust and an equivalent blend of sand and quarry dust. It was discovered that the compressive strength and split tensile strength of concrete produced using the blend of quarry residue and sand was higher than the compressive qualities of concrete produced using 100% sand and 100% quarry dust.


2018 ◽  
Vol 6 (6) ◽  
pp. 453-460
Author(s):  
Chijioke C ◽  
Nwaiwu ◽  
Aginam ◽  
Anyadiegwu

This work focuses on the 100% replacement of river sand with quarry dust in the production of concrete. Two types of concrete were produced (concrete made with river sand and that made with quarry dust as fine aggregate), the concretes produces were cast into beams and cured for 28 days. The flexural strengths of the concrete beams cast was determine at 28 day strength. At 28 days target strength the maximum flexural strength of concrete made with river sand as fine aggregate is 5.375111N/mm2 and minimum flexural strength is 2.2155N/mm2, for the concrete made with quarry dust as fine aggregate the maximum flexural strength is 2.567 N/mm2. The maximum value of 2.567 N/mm2 for concrete made with quarry dust as fine aggregate is higher than the minimum value of 2.2155N/mm2 for concrete made with river sand as fine aggregate. With this result it shows that quarry dust is a good substitute to river sand in the production of concrete.


2018 ◽  
Vol 30 (3) ◽  
Author(s):  
Jaharatul Dini Karen Lee Abdullah ◽  
Nazri Ali ◽  
Roslli Noor Mohamed ◽  
Mohammed Mu’azu Abdullahi

The numerous demanding application of concrete is not readily met with Ordinary Portland Cement (OPC) alone. To meet up the demand and as well as ensured the green concrete durability, it has becomes necessary to incorporate mineral additions with the best combination of others by-product as replacement to improve the performance without jeopardizing the strength of the concrete. In the construction industry, OPC cement and river sand are used as important building material making it scarce and limited. Whereas, as for the cement is well known as the biggest culprits for emitting carbon dioxide (CO2). Hence, partial replacement of cement becomes a necessity as well as natural sand in concrete by waste material or by-product without compromising the quality of the end product. Partial replacement with Ground Granulated Blast furnace Slag (GGBS), Fly Ash (PFA), Silica Fumes (SILICA) incorporates with 100% of Quarry Dust (QD) as sand replacement. The usage of 100% QD with OPC+PFA+SILICA (Mix 2) produced more durable concrete with good temperature control and better furnishing than with 100% river. In addition to the cost effect benefit, the reduction in depletion of river sand, addressing environment and sustainability issues, it is a valuable contribution in creating a green concrete.


In recent decades, there is a sprut in the growth of the construction industry. Aggregates are one of the main ingredients for making concrete. Depletion of natural resources of sand and the effect of mass production of cement on sustainable environment, need studies on the use of alternative materials. On the other hand, dumping of wastes from the industries are piling up resulting in the pollution of the environment. By considering the above facts, severe studies are focused on partial replacement of river sand with alternatives like copper slag, steel slag, quarry dust, etc., The outcome of these studies shows that the alternate materials enlarge the mechanical and durability properties of concrete. The optimum dose of alternate materials to replacement of sand is evaluated. In this paper, technical papers published by researchers are studied, discussed and compared


Author(s):  
C.H. Aginam ◽  
C.M. Nwakaire ◽  
P.D. Onodagu ◽  
N.M. Ezema

The use of crushed quarry dust as a partial replacement of river sand in concrete production was investigated in this study. This is expedient as quarry dust can be available at some locations with insufficient river sand for construction purposes. The use of quarry dust is also in concrete is also a measure necessary for improvement of concrete strength. River sand was replaced with quarry dust for different mix designs of concrete for 0% to 25% replacement levels with 5% intervals. The physical properties of river sand and quarry dust were tested and reported and the workability as well as compressive strengths of the concrete mixtures were also tested. It was observed that the slump values increased with increase in percentage replacement of sand with quarry dust. The compressive strength of cubes at 28 day curing for control mixture of 1:3:6 at 0% partial replacement of river sand with quarry dust was 12.6N/mm2 but compressive strengths of 21.5 N/mm2 and 26.0 N/mm2 were gotten for 1:2:4 concrete and 1:1.5:3 concrete respectively. As the quarry dust content increased to 25%, the 28day compressive strength increased to 13.58 N/mm2 and 21.57 N/mm2 for the 1:3:6 and 1:2:4 mixes respectively. Compressive strength values decreased to a value of 25.72N/mm2 for the 1:1.5:3 concrete mix. The maximum compressive strength values were reached at 20% quarry dust content at the age of 28 days for the three concrete grades investigated. The increase in compressive strength with inclusion of quarry dust was attributed to the higher specific gravity of quarry dust above river sand. The compressive strength of quarry dust concrete continued to increase with age for all the percentages of quarry dust contents. Quarry dust was recommended as a suitable partial replacement for river bed sand in concrete production.


Concrete is an important construction material widely used in the construction industry nowadays. It is blended material consisting of cement, fine aggregate, coarse aggregate and water. Generally the use of river sand as fine aggregate in our country is very widespread in industry. This paper mainly focuses on the study of strength properties of concrete in which river sand is replaced with sea sand as fine aggregate. In addition to it, Quarry Dust when added gains strength. Different mix proportions was replaced partially in 5%, 10%, 15% by Sea sand and Quarry dust. The strength of concrete for various mix proportions are carried out and tested for 14, 28, 56 days of curing. From the results obtained, with the replacement of river sand by sea sand along with well graded quarry dust upto to 15% increases the strength of concrete.


Author(s):  
S.O Ajamu ◽  
I.A Raheem ◽  
S.B Attah ◽  
J.O Onicha

Natural river sand is one of the important constituent materials in concrete production while stone dust is a material obtained from crusher plants which is also sometimes being used either partially or fully in replacement of natural river sand in concrete production. Use of stone dust in concrete not only improves the quality of concrete but also conserve the natural river sand. However, due its scarcity and environmental degradation caused resulting from excessive mining of Natural river sand, there is need to investigate an alternative material of the same quality which can replace river sand in concrete production. In the present study, experiments were carried out to study the gradation of aggregates, workability, compressive strength and split tensile strength of concrete made using quarry dust as replacement of fine aggregate at 0, 25, 50, 75, and 100%. Grade M15 of concrete was produced with ordinary Portland cement (OPC) for referral concrete while M25 of concrete was prepared for compressive strength and split tensile strength concrete. Workability and Compressive strength were determined at different replacement level of fine aggregate and optimum replacement level was determined based on compressive strength. Results showed that by replacing 50% of fine aggregate with quarry dust, concrete of maximum compressive strength can be produced as compared to all other replacement levels. The effect of quarry dust on compressive strength and split tensile strength was investigated and from the overall result obtained, it was observed that the compressive strength and split tensile strength increased significantly for all the curing ages from 0% to 50% replacement level of quarry dust. Maximum value obtained for 28day compressive and tensile strength were 25N/mm2 and 2.3N/mm2 respectively and this occurred at 50% replacement.


The present paper focuses on the effective utilization of byproduct of stone mines and waste plastic causing harm to the environment. It signifies sustainable utilization of quarry dust to their full potential to meet the needs of the present, while at the same time conserving natural resources and finding ways to minimise the environmental impacts associated both with quarry fines production. Mathematical modeling for interpreting modulus of elasticity of concrete mixes using ordinary river sand and compared with 0, 25%,50%,75%, 100% replacement with quarry dust in combination with waste plastic in fabriform is discussed. The addition of fine quarry dust with ldpe as waste plastic in concrete resulted in improved matrix densification compared to conventional concrete as well as . Matrix densification has been studied qualitatively through petro graphical examination using digital optical microscopy. The structure was evaluated using SEM in quarry dust and ldpe composites. It is observed that the modulus of elasticity values found to be maximum for 50% replacement of natural sand by quarry dust and waste plastic. The effects of quarry dust on the elastic modulus property were found to be consistent with conventional natural sand.


Sign in / Sign up

Export Citation Format

Share Document