Neuroprotective effects of honokiol against beta-amyloid-induced neurotoxicity via GSK-3β and β-catenin signaling pathway in PC12 cells

2016 ◽  
Vol 97 ◽  
pp. 8-14 ◽  
Author(s):  
Yan-Fang Xian ◽  
Siu-Po Ip ◽  
Qing-Qiu Mao ◽  
Zhi-Xiu Lin
2009 ◽  
Vol 622 (1-3) ◽  
pp. 25-31 ◽  
Author(s):  
Hyo-Shin Kim ◽  
Ji-Youn Lim ◽  
Donggeun Sul ◽  
Bang Yeon Hwang ◽  
Tae-Jun Won ◽  
...  

PeerJ ◽  
2020 ◽  
Vol 8 ◽  
pp. e8955
Author(s):  
Ying Zhang ◽  
Nanqu Huang ◽  
Hao Lu ◽  
Juan Huang ◽  
Hai Jin ◽  
...  

Background Icariin (ICA) is one of the major active flavonoids extracted from the traditional Chinese herb Epimedium brevicornum Maxim and has been shown to have neuroprotective effects. This study was designed to investigate the effect of ICA on sodium azide (NaN3)-induced rat adrenal pheochromocytoma (PC12) cell damage and to further examine the underlying mechanisms. Methods To explore its possible mechanism, we used NaN3 (50 mM)-induced neuronal PC12 cell damage. Cell viability was evaluated by CCK-8 and lactate dehydrogenase (LDH) assays. Mitochondrial membrane potential (MMP) was detected by JC-1. Glucose concentration was assessed by the glucose oxidase method. The role of ICA in the PI3K/Akt/GSK-3β signaling pathway was explored by Western blotting. Results The results indicate that pretreatment with ICA reduced NaN3-induced cell damage and significantly reduced the leakage rate of LDH in PC12 cells. ICA pretreatment increased the MMP and a decrease in glucose concentration indicate increased glucose consumption. Furthermore, the protein levels of p-PI3K (p85), PI3K-110α, p-Ser473-Akt and p-Ser9-GSK-3β were markedly decreased in PC12 cells after NaN3 treatment for 24 h, whereas these effects were reverted after pretreatment with ICA. Tau phosphorylation at the Ser396/404 and Thr217 sites was significantly decreased by pretreatment with ICA. Conclusions These results suggest that ICA protects against NaN3-induced neurotoxicity in PC12 cells by activating the PI3K/Akt/GSK-3β signaling pathway.


Molecules ◽  
2020 ◽  
Vol 25 (22) ◽  
pp. 5391
Author(s):  
Zheng Liu ◽  
Ming Bian ◽  
Qian-Qian Ma ◽  
Zhuo Zhang ◽  
Huan-Huan Du ◽  
...  

A series of novel synthetic substituted benzo[d]oxazole-based derivatives (5a–5v) exerted neuroprotective effects on β-amyloid (Aβ)-induced PC12 cells as a potential approach for the treatment of Alzheimer’s disease (AD). In vitro studies show that most of the synthesized compounds were potent in reducing the neurotoxicity of Aβ25-35-induced PC12 cells at 5 μg/mL. We found that compound 5c was non-neurotoxic at 30 μg/mL and significantly increased the viability of Aβ25-35-induced PC12 cells at 1.25, 2.5 and 5 μg/mL. Western blot analysis showed that compound 5c promoted the phosphorylation of Akt and glycogen synthase kinase (GSK-3β) and decreased the expression of nuclear factor-κB (NF-κB) in Aβ25-35-induced PC12 cells. In addition, our findings demonstrated that compound 5c protected PC12 cells from Aβ25-35-induced apoptosis and reduced the hyperphosphorylation of tau protein, and decreased the expression of receptor for AGE (RAGE), β-site amyloid precursor protein (APP)-cleaving enzyme 1 (BACE1), inducible nitric oxide synthase (iNOS) and Bcl-2-associated X protein/B-cell lymphoma 2 (Bax/Bcl-2) via Akt/GSK-3β/NF-κB signaling pathway. In vivo studies suggest that compound 5c shows less toxicity than donepezil in the heart and nervous system of zebrafish.


2017 ◽  
Vol 96 ◽  
pp. 1-6 ◽  
Author(s):  
Wanyue Huang ◽  
Ping Cheng ◽  
Kaiyuan Yu ◽  
Yanfei Han ◽  
Miao Song ◽  
...  

2020 ◽  
Vol 68 (51) ◽  
pp. 15239-15248
Author(s):  
Yanyan Luo ◽  
Yunyao Jiang ◽  
Yang He ◽  
Ting Shen ◽  
Lilian Ji ◽  
...  

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jing Zhang ◽  
Wenchuang Fan ◽  
Hui Wang ◽  
Lihua Bao ◽  
Guibao Li ◽  
...  

Resveratrol, herbal nonflavonoid polyphenolic compound naturally derived from grapes, has long been acknowledged to possess extensive biological and pharmacological properties including antioxidant and anti-inflammatory ones and may exert a neuroprotective effect on neuronal damage in neurodegenerative diseases. However, the underlying molecular mechanisms remain undefined. In the present study, we intended to investigate the neuroprotective effects of resveratrol against 6-OHDA-induced neurotoxicity of PC12 cells and further explore the possible mechanisms involved. For this purpose, PC12 cells were exposed to 6-OHDA in the presence of resveratrol (0, 12.5, 25, and 50 μM). The results showed that resveratrol increased cell viability, alleviated the MMP reduction, and reduced the number of apoptotic cells as measured by MTT assay, JC-1 staining, and Hoechst/PI double staining (allp<0.01). Immunofluorescent staining and Western blotting revealed that resveratrol averts 6-OHDA induced CXCR4 upregulation (p<0.01). Our results demonstrated that resveratrol could effectively protect PC12 cells from 6-OHDA-induced oxidative stress and apoptosis via CXCR4 signaling pathway.


Sign in / Sign up

Export Citation Format

Share Document