scholarly journals Effects of hunger state on the brain responses to food cues across the life span

NeuroImage ◽  
2018 ◽  
Vol 171 ◽  
pp. 246-255 ◽  
Author(s):  
L. Charbonnier ◽  
F. van Meer ◽  
A.M. Johnstone ◽  
D. Crabtree ◽  
W. Buosi ◽  
...  
NeuroImage ◽  
2021 ◽  
Vol 233 ◽  
pp. 117860
Author(s):  
L. Charbonnier ◽  
F. van Meer ◽  
A.M. Johnstone ◽  
D. Crabtree ◽  
W. Buosi ◽  
...  

2019 ◽  
Vol 44 (3) ◽  
pp. 590-600 ◽  
Author(s):  
Gene-Jack Wang ◽  
Ehsan Shokri Kojori ◽  
Kai Yuan ◽  
Corinde E. Wiers ◽  
Peter Manza ◽  
...  

Abstract Objective Obesity is associated with impaired inhibitory control over food intake. We hypothesized that the neural circuitry underlying inhibition of food craving would be impaired in obesity. Here we assessed whether obese men show altered brain responses during attempted cognitive inhibition of craving when exposed to food cues. Methods Sixteen obese men (32 ± 8.7 years old, BMI = 38.6 ± 7.2) were compared with 11 age-matched non-obese men (BMI 24.2 ± 2.5) using PET and FDG. Brain glucose metabolism was evaluated in a food deprived state: no food stimulation, food stimulation with no inhibition (NI), and food stimulation with attempted inhibition (AI), each on a separate day. Individualized favorite food items were presented prior to and after FDG injection for 40 min. For AI, participants were asked to attempt to inhibit their desire for the food presented. Self-reports for hunger and food desire were recorded. Results Food stimulation compared with no stimulation increased glucose metabolism in inferior and superior frontal gyrus, default mode network and cerebellum, in both groups. For both groups, AI compared with NI-suppressed metabolism in right subgenual anterior cingulate, orbitofrontal areas, bilateral insula, and temporal gyri. There was a stimulation-by-group interaction effect in obese (but not in non-obese) men showing increased metabolism in pregenual anterior cingulate cortex (pgACC) and caudate during AI relative to NI. Changes in the food desire from NI to AI correlated negatively with changes in metabolism in pgACC/caudate in obese but not in non-obese men. Conclusions Obese men showed higher activation in pgACC/caudate, which are regions involved with self-regulation and emotion/reward during AI. Behavioral associations suggest that successful AI is an active process requiring more energy in obese but not in non-obese men. The additional required effort to increase cognitive control in response to food stimulation in obese compared with non-obese men may contribute to their uncontrolled eating behavior.


Author(s):  
Anil K. Seth

Consciousness is perhaps the most familiar aspect of our existence, yet we still do not know its biological basis. This chapter outlines a biomimetic approach to consciousness science, identifying three principles linking properties of conscious experience to potential biological mechanisms. First, conscious experiences generate large quantities of information in virtue of being simultaneously integrated and differentiated. Second, the brain continuously generates predictions about the world and self, which account for the specific content of conscious scenes. Third, the conscious self depends on active inference of self-related signals at multiple levels. Research following these principles helps move from establishing correlations between brain responses and consciousness towards explanations which account for phenomenological properties—addressing what can be called the “real problem” of consciousness. The picture that emerges is one in which consciousness, mind, and life, are tightly bound together—with implications for any possible future “conscious machines.”


2021 ◽  
pp. 026010602199375
Author(s):  
Olivia M. Farr

Background: Diet soda consumption has frequently been linked to obesity and its comorbidities in epidemiological studies. Whether this link is causal and a potential mechanism remains to be determined. Aim/Methods: This randomized, cross-over, controlled pilot study sought to determine whether there may be changes in reward-related brain activations to visual food cues after acute consumption of diet soda versus regular soda or carbonated water using functional magnetic resonance imaging. Results: Diet soda as compared to carbonated water consumption increased activation of reward-related caudate to highly versus less desirable food cues. Diet soda as compared to regular soda increased reward-related insula and decreased activation of cognitive control-related dorsolateral prefrontal cortex to food cues versus non-food cues. No changes in ratings of hunger an hour after beverage consumption were observed. Conclusions: These results may suggest a potential mechanism for diet soda to increase food palatability through activation of the reward system and suppression of inhibitory control that remains to be confirmed by future studies.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Chia-Wei Li ◽  
Carol Yeh-Yun Lin ◽  
Ting-Ting Chang ◽  
Nai-Shing Yen ◽  
Danchi Tan

AbstractManagers face risk in explorative decision-making and those who are better at such decisions can achieve future viability. To understand what makes a manager effective at explorative decision-making requires an analysis of the manager’s motivational characteristics. The behavioral activation/inhibition system (BAS/BIS), fitting the motivational orientation of “approach” or “avoidance,” can affect individual decision-making. However, very little is known about the neural correlates of BAS/BIS orientation and their interrelationship with the mental activity during explorative decision-making. We conducted an fMRI study on 111 potential managers to investigate how the brain responses of explorative decision-making interact with BAS/BIS. Participants were separated into high- and low-performance groups based on the median exploration-score. The low-performance group showed significantly higher BAS than that of the high-performance group, and its BAS had significant negative association with neural networks related to reward-seeking during explorative decision-making. Moreover, the BIS of the low-performance group was negatively correlated with the activation of cerebral regions responding to risk-choice during explorative decision-making. Our finding showed that BAS/BIS was associated with the brain activation during explorative decision-making only in the low-performance group. This study contributed to the understanding of the micro-foundations of strategically relevant decision-making and has an implication for management development.


2018 ◽  
Vol 314 (5) ◽  
pp. E522-E529 ◽  
Author(s):  
Renata Belfort-DeAguiar ◽  
Dongju Seo ◽  
Cheryl Lacadie ◽  
Sarita Naik ◽  
Christian Schmidt ◽  
...  

Blood glucose levels influence brain regulation of food intake. This study assessed the effect of mild physiological hyperglycemia on brain response to food cues in individuals with obesity (OB) versus normal weight individuals (NW). Brain responses in 10 OB and 10 NW nondiabetic healthy adults [body mass index: 34 (3) vs. 23 (2) kg/m2, means (SD), P < 0.0001] were measured with functional MRI (blood oxygen level-dependent contrast) in combination with a two-step normoglycemic-hyperglycemic clamp. Participants were shown food and nonfood images during normoglycemia (~95 mg/dl) and hyperglycemia (~130 mg/dl). Plasma glucose levels were comparable in both groups during the two-step clamp ( P = not significant). Insulin and leptin levels were higher in the OB group compared with NW, whereas ghrelin levels were lower (all P < 0.05). During hyperglycemia, insula activity showed a group-by-glucose level effect. When compared with normoglycemia, hyperglycemia resulted in decreased activity in the hypothalamus and putamen in response to food images ( P < 0.001) in the NW group, whereas the OB group exhibited increased activity in insula, putamen, and anterior and dorsolateral prefrontal cortex (aPFC/dlPFC; P < 0.001). These data suggest that OB, compared with NW, appears to have disruption of brain responses to food cues during hyperglycemia, with reduced insula response in NW but increased insula response in OB, an area involved in food perception and interoception. In a post hoc analysis, brain activity in obesity appears to be associated with dysregulated motivation (striatum) and inappropriate self-control (aPFC/dlPFC) to food cues during hyperglycemia. Hyperstimulation for food and insensitivity to internal homeostatic signals may favor food consumption to possibly play a role in the pathogenesis of obesity.


2013 ◽  
Vol 2013 ◽  
pp. 1-14 ◽  
Author(s):  
Chuanfu Li ◽  
Jun Yang ◽  
Jinbo Sun ◽  
Chunsheng Xu ◽  
Yuanqiang Zhu ◽  
...  

In recent years, neuroimaging studies of acupuncture have explored extensive aspects of brain responses to acupuncture in finding its underlying mechanisms. Most of these studies have been performed on healthy adults. Only a few studies have been performed on patients with diseases. Brain responses to acupuncture in patients with the same disease at different pathological stages have not been explored, although it may be more important and helpful in uncovering its underlying mechanisms. In the present study, we used fMRI to compare brain responses to acupuncture in patients with Bell’s palsy at different pathological stages with normal controls and found that the brain response to acupuncture varied at different pathological stages of Bell’s palsy. The brain response to acupuncture decreased in the early stages, increased in the later stages, and nearly returned to normal in the recovered group. All of the changes in the brain response to acupuncture could be explained as resulting from the changes in the brain functional status. Therefore, we proposed that the brain response to acupuncture is dependent on the brain functional status, while further investigation is needed to provide more evidence in support of this proposition.


2021 ◽  
pp. 1-17
Author(s):  
Avital Sternin ◽  
Lucy M. McGarry ◽  
Adrian M. Owen ◽  
Jessica A. Grahn

Abstract We investigated how familiarity alters music and language processing in the brain. We used fMRI to measure brain responses before and after participants were familiarized with novel music and language stimuli. To manipulate the presence of language and music in the stimuli, there were four conditions: (1) whole music (music and words together), (2) instrumental music (no words), (3) a capella music (sung words, no instruments), and (4) spoken words. To manipulate participants' familiarity with the stimuli, we used novel stimuli and a familiarization paradigm designed to mimic “natural” exposure, while controlling for autobiographical memory confounds. Participants completed two fMRI scans that were separated by a stimulus training period. Behaviorally, participants learned the stimuli over the training period. However, there were no significant neural differences between the familiar and unfamiliar stimuli in either univariate or multivariate analyses. There were differences in neural activity in frontal and temporal regions based on the presence of language in the stimuli, and these differences replicated across the two scanning sessions. These results indicate that the way we engage with music is important for creating a memory of that music, and these aspects, over and above familiarity on its own, may be responsible for the robust nature of musical memory in the presence of neurodegenerative disorders such as Alzheimer's disease.


2021 ◽  
pp. 1-34
Author(s):  
Hyein Jeong ◽  
Emiel van den Hoven ◽  
Sylvain Madec ◽  
Audrey Bürki

Abstract Usage-based theories assume that all aspects of language processing are shaped by the distributional properties of the language. The frequency not only of words but also of larger chunks plays a major role in language processing. These theories predict that the frequency of phrases influences the time needed to prepare these phrases for production and their acoustic duration. By contrast, dominant psycholinguistic models of utterance production predict no such effects. In these models, the system keeps track of the frequency of individual words but not of co-occurrences. This study investigates the extent to which the frequency of phrases impacts naming latencies and acoustic duration with a balanced design, where the same words are recombined to build high- and low-frequency phrases. The brain signal of participants is recorded so as to obtain information on the electrophysiological bases and functional locus of frequency effects. Forty-seven participants named pictures using high- and low-frequency adjective–noun phrases. Naming latencies were shorter for high-frequency than low-frequency phrases. There was no evidence that phrase frequency impacted acoustic duration. The electrophysiological signal differed between high- and low-frequency phrases in time windows that do not overlap with conceptualization or articulation processes. These findings suggest that phrase frequency influences the preparation of phrases for production, irrespective of the lexical properties of the constituents, and that this effect originates at least partly when speakers access and encode linguistic representations. Moreover, this study provides information on how the brain signal recorded during the preparation of utterances changes with the frequency of word combinations.


Sign in / Sign up

Export Citation Format

Share Document