scholarly journals Microstructure-informed prediction and measurement of nanoindentation hardness of an Fe-9Cr alloy irradiated with Fe-ions of 1 and 5 MeV energy

2021 ◽  
pp. 101105
Author(s):  
G. Kapoor ◽  
P. Chekhonin ◽  
C. Kaden ◽  
K. Vogel ◽  
F. Bergner
2021 ◽  
pp. 153483
Author(s):  
Koichi Sato ◽  
Ryuta Kasada ◽  
Atsushi Kiyohara ◽  
Masashi Hirabaru ◽  
Kenichi Nakano ◽  
...  

Author(s):  
Hiroki Kurata ◽  
Kazuhiro Nagai ◽  
Seiji Isoda ◽  
Takashi Kobayashi

Electron energy loss spectra of transition metal oxides, which show various fine structures in inner shell edges, have been extensively studied. These structures and their positions are related to the oxidation state of metal ions. In this sence an influence of anions coordinated with the metal ions is very interesting. In the present work, we have investigated the energy loss near-edge structures (ELNES) of some iron compounds, i.e. oxides, chlorides, fluorides and potassium cyanides. In these compounds, Fe ions (Fe2+ or Fe3+) are octahedrally surrounded by six ligand anions and this means that the local symmetry around each iron is almost isotropic.EELS spectra were obtained using a JEM-2000FX with a Gatan Model-666 PEELS. The energy resolution was about leV which was mainly due to the energy spread of LaB6 -filament. The threshole energies of each edges were measured using a voltage scan module which was calibrated by setting the Ni L3 peak in NiO to an energy value of 853 eV.


2018 ◽  
pp. 25-34
Author(s):  
S. V. Rogozhkin ◽  
◽  
A. A. Nikitin ◽  
A. A. Khomich ◽  
N. A. Iskandarov ◽  
...  

Coatings ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 213
Author(s):  
James J. Price ◽  
Tingge Xu ◽  
Binwei Zhang ◽  
Lin Lin ◽  
Karl W. Koch ◽  
...  

This work presents fundamental understanding of the correlation between nanoindentation hardness and practical scratch resistance for mechanically tunable anti-reflective (AR) hardcoatings. These coatings exhibit a unique design freedom, allowing quasi-continuous variation in the thickness of a central hardcoat layer in the multilayer design, with minimal impact on anti-reflective optical performance. This allows detailed study of anti-reflection coating durability based on variations in hardness vs. depth profiles, without the durability results being confounded by variations in optics. Finite element modeling is shown to be a useful tool for the design and analysis of hardness vs. depth profiles in these multilayer films. Using samples fabricated by reactive sputtering, nanoindentation hardness depth profiles were correlated with practical scratch resistance using three different scratch and abrasion test methods, simulating real world scratch events. Scratch depths from these experiments are shown to correlate to scratches observed in the field from consumer electronics devices with chemically strengthened glass covers. For high practical scratch resistance, coating designs with hardness >15 GPa maintained over depths of 200–800 nm were found to be particularly excellent, which is a substantially greater depth of high hardness than can be achieved using previously common AR coating designs.


Materials ◽  
2021 ◽  
Vol 14 (15) ◽  
pp. 4061
Author(s):  
Yongtao Li ◽  
Liqing Liu ◽  
Dehao Wang ◽  
Hongguang Zhang ◽  
Xuemin He ◽  
...  

BiFeO3 is considered as a single phase multiferroic. However, its magnetism is very weak. We study the magnetic properties of BiFeO3 by Cu and (Cu, Zn). Polycrystalline samples Bi(Fe0.95Cu0.05)O3 and BiFe0.95(Zn0.025Cu0.025)O3 are prepared by the sol-gel method. The magnetic properties of BiFe0.95(Zn0.025Cu0.025)O3 are greater than that of BiFeO3 and Bi(Fe0.95Cu0.05)O3. The analyses of X-ray absorption fine structure data show that the doped Cu atoms well occupy the sites of the Fe atoms. X-ray absorption near edge spectra data confirm that the valence state of Fe ions does not change. Cu and Zn metal ion co-doping has no impact on the local structure of the Fe and Bi atoms. The modification of magnetism by doping Zn can be understood by the view of the occupation site of non-magnetically active Zn2+.


2014 ◽  
Vol 89 (7-8) ◽  
pp. 1637-1641 ◽  
Author(s):  
Ryuta Kasada ◽  
Satoshi Konishi ◽  
Kiyohiro Yabuuchi ◽  
Shuhei Nogami ◽  
Masami Ando ◽  
...  

1993 ◽  
Vol 24 (4) ◽  
pp. 299-304 ◽  
Author(s):  
J Kapoor ◽  
A Metz ◽  
D Riegel ◽  
R Zeller ◽  
K. D Gross ◽  
...  
Keyword(s):  

2021 ◽  
Author(s):  
Stephen Christon ◽  
Douglas Hamilton ◽  
John Plane ◽  
Donald Mitchell ◽  
Walther Spjeldvik ◽  
...  
Keyword(s):  

2013 ◽  
Vol 2013 ◽  
pp. 1-4 ◽  
Author(s):  
Yi-Dong Luo ◽  
Yuan-Hua Lin ◽  
Xuehui Zhang ◽  
Deping Liu ◽  
Yang Shen ◽  
...  

Ni1−xFexOnanofibers with different Fe doping concentration have been synthesized by electrospinning method. An analysis of the phase composition and microstructure shows that Fe doping has no influence on the crystal structure and morphology of NiO nanofibers, which reveals that the doped Fe ions have been incorporated into the NiO host lattice. Pure NiO without Fe doping is antiferromagnetic, yet all the Fe-doped NiO nanofiber samples show obvious room-temperature ferromagnetic properties. The saturation magnetization of the nanofibers can be enhanced with increasing Fe doping concentration, which can be ascribed to the double exchange mechanism through the doped Fe ions and free charge carriers. In addition, it was found that the diameter of nanofibers has significant impact on the ferromagnetic properties, which was discussed in detail.


Sign in / Sign up

Export Citation Format

Share Document