Neurotensin enhances nitric oxide generation via the JAK2-STAT1 pathway in murine macrophage Raw264.7 cells during costimulation with LPS and IFNγ

Neuropeptides ◽  
2006 ◽  
Vol 40 (3) ◽  
pp. 221-229 ◽  
Author(s):  
Hyeon Soo Kim ◽  
Sanatombi Yumkham ◽  
Jang Hyun Choi ◽  
Sun Hee Lee ◽  
Tae-Ho Kim ◽  
...  
2000 ◽  
Vol 28 (02) ◽  
pp. 217-226 ◽  
Author(s):  
Hiroshi Kawamata ◽  
Hiroshi Ochiai ◽  
Naoki Mantani ◽  
Katsutoshi Terasawa

We have investigated the effect of Juzen-taiho-to (TJ-48) on inducible NO synthase (iNOS) expression and nitric oxide (NO) production in RAW264.7 cells, a murine macrophage cell line. TJ-48-lipopolysaccharide (LPS) combination induced iNOS mRNA expression earlier, stronger and remained longer that paralleled but with a higher NO production compared to LPS stimulation. TJ-48 itself showed no inducible effect either no NO production or iNOS mRNA expression. This phenomenon could be considered to contribute, at least in part, to the beneficial effects of TJ-48 through the iNOS-mediated activation of biodefense mechanism.


Molecules ◽  
2020 ◽  
Vol 25 (16) ◽  
pp. 3573
Author(s):  
Lian-Chun Li ◽  
Zheng-Hong Pan ◽  
De-Sheng Ning ◽  
Yu-Xia Fu

Simonsinol is a natural sesqui-neolignan firstly isolated from the bark of Illicium simonsii. In this study, the anti-inflammatory activity of simonsinol was investigated with a lipopolysaccharide (LPS)-stimulated murine macrophages RAW264.7 cells model. The results demonstrated that simonsinol could antagonize the effect of LPS on morphological changes of RAW264.7 cells, and decrease the production of nitric oxide (NO), tumor necrosis factor α (TNF-α), and interleukin 6 (IL-6) in LPS-stimulated RAW264.7 cells, as determined by Griess assay and enzyme-linked immunosorbent assay (ELISA). Furthermore, simonsinol could downregulate transcription of inducible nitric oxide synthase (iNOS), TNF-α, and IL-6 as measured by reverse transcription polymerase chain reaction (RT-PCR), and inhibit phosphorylation of the alpha inhibitor of NF-κB (IκBα) as assayed by Western blot. In conclusion, these data demonstrate that simonsinol could inhibit inflammation response in LPS-stimulated RAW264.7 cells through the inactivation of the nuclear transcription factor kappa-B (NF-κB) signaling pathway.


2020 ◽  
Vol 85 (4) ◽  
pp. 882-889
Author(s):  
Yan Liang ◽  
Shijiao Zha ◽  
Masanobu Tentaku ◽  
Takasi Okimura ◽  
Zedong Jiang ◽  
...  

ABSTRACT In this study, we found that a sulfated polysaccharide isolated from the brown alga Ascophyllum nodosum, ascophyllan, showed suppressive effects on stimulated RAW264.7 cells. Ascophyllan significantly inhibited expression of inducible nitric oxide synthase mRNA and excessive production of nitric oxide (NO) in lipopolysaccharide (LPS)-stimulated RAW264.7 cells in a dose-dependent manner without affecting the viability of RAW264.7 cells. Ascophyllan also reduced the elevated level of intracellular reactive oxygen species (ROS) in LPS-stimulated RAW264.7 cells. Furthermore, preincubation with ascophyllan resulted in concentration-dependent decrease in ROS production in phorbol 12-myristate-13-acetate-stimulated RAW264.7 cells. Our results suggest that ascophyllan can exhibit anti-inflammatory effects on stimulated macrophages mainly through the attenuation of NO and ROS productions.


Sign in / Sign up

Export Citation Format

Share Document