Mechanistic model of iodine mass transfer at pool surfaces

2014 ◽  
Vol 278 ◽  
pp. 627-631
Author(s):  
K. Fischer ◽  
M. Freitag ◽  
H.S. Kang
2018 ◽  
Vol 178 ◽  
pp. 222-237 ◽  
Author(s):  
Carlos L. Bassani ◽  
Fausto A.A. Barbuto ◽  
Amadeu K. Sum ◽  
Rigoberto E.M. Morales

1986 ◽  
Vol 84 ◽  
Author(s):  
John C. Walton ◽  
B. Sagar

AbstractTheory of a mechanistic model for estimating the maximum rate of uniform corrosion for a steel or copper container in a saturated repository environment is described. Four oxidants that are considered are oxygen, sulfate, radiolysis products, and water. Rates of corrosion from oxygen and sulfate reduction are assumed limited by the rate of inward diffusion of the oxidant through the rock, packing, and corrosion product layers surrounding the container. Reduction of water is limited by kinetic processes as influenced by mass transfer of products and reactants, temperature, and pH. Substantial changes in the system resulting from the corrosion process are predicted to occur over time.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mahboubeh Pishnamazi ◽  
Ali Taghvaie Nakhjiri ◽  
Arezoo Sodagar Taleghani ◽  
Mahdi Ghadiri ◽  
Azam Marjani ◽  
...  

Abstract Continuous membrane separation of pharmaceuticals from an aqueous feed was studied theoretically by development of high-performance mechanistic model. The model was developed based on mass and momentum transfer to predict separation and removal of ibuprofen (IP) and its metabolite compound, i.e. 4-isobutylacetophenone (4-IBAP) from aqueous solution. The modeling study was carried out for a membrane contactor considering mass transport of solute from feed to organic solvent (octanol solution). The solute experiences different mass transfer resistances during the removal in membrane system which were all taken into account in the modeling. The model’s equations were solved using computational fluid dynamic technique, and the simulations were carried out to understand the effect of process parameters, flow pattern, and membrane properties on the removal of both solutes. The simulation results indicated that IP and 4-IBAP can be effectively removed from aqueous feed by adjusting the process parameters and flow pattern. More removal was obtained when the feed flows in the shell side of membrane system due to improving mass transfer. Also, feed flow rate was indicated to be the most affecting process parameter, and the highest solute removal was obtained at the lowest feed flow rate.


2021 ◽  
Author(s):  
Chayan Das ◽  
Rohit Gupta ◽  
Saikat Halder ◽  
Amitava Datta ◽  
Ranjan Ganguly

Abstract The process involving heat and mass transfer during filmwise condensation (FWC) in presence of non-condensable gases (NCG) has great significance in a large variety of engineering applications. The vapor mass flux leading to condensation and the resulting condensation heat transfer coefficient (CHTC) are dependent on the gradients of temperature and vapor mass fraction established near the condenser plate. The effects of the two most influencing thermodynamic parameters, i.e., the degree of subcooling and the difference of humidity ratio (between the free stream environment and on the condenser plate), have been characterized in this work both experimentally and through a mechanistic model. The vapor mass flux during condensation on a subcooled vertical superhydrophilic surface under a free convection regime is experimentally measured in a controlled environment (temperature and humidity) chamber. A mechanistic model, based on the similarity of energy and species transports, is formulated for the thermogravitational boundary layer over the condenser plate and tuned against the experimental results. Further, the model is used to obtain comprehensive data of the condensate mass flux and CHTC as functions of the salient thermal operating conditions over a wide parametric range. Results indicate that humidity ratio difference has a more pronounced influence on the condensation mass transfer rather than the degree of subcooling. The mechanistic model lends to the development of empirical correlations of condensate mass flux and CHTC as explicit functions of these two parameters for easy use in practical FWC configurations.


Processes ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 837
Author(s):  
Susanti ◽  
Sediawan ◽  
Fahrurrozi ◽  
Hidayat

The extraction of phytochemical compounds from intact red sorghum grains was developed as an alternative process for producing bioactive material in the pharmaceutical industry. A mechanistic model is needed to better understand the process and enable predictive simulations for designing commercial-scale extraction systems. This paper presents a mathematical model for predicting phytochemical concentrations in the solvent and inside the pericarp of the grain at different positions during the extraction. The model is based on the mass transfer mechanism from inside the pericarp to its solid surface by diffusion, and then from the surface to a solvent during the extraction of bioactive compounds. It was numerically solved while using finite-difference approximation. The parameters considered were effective diffusivity inside the pericarp (Dep), mass transfer coefficient from the pericarp surface to the solvent (kc), and distribution coefficient (H). The model simulates the extraction performance, including the yield and bioactive compounds’ concentrations in the extract and inside the pericarp at various positions and times. A sensitivity analysis of the changes in each involved parameter provided sufficient information for increasing the performance of the model. A validation test that compared the results of the simulation with those of established analytical solutions showed that the model has high accuracy. Hence, the model can be applied in quantitative evaluations to improve productivity in the pharmaceutical industry.


Biosensors ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 144
Author(s):  
Neda Rafat ◽  
Paul Satoh ◽  
Scott Calabrese Barton ◽  
Robert Mark Worden

Electrochemical immunosensors (EIs) integrate biorecognition molecules (e.g., antibodies) with redox enzymes (e.g., horseradish peroxidase) to combine the advantages of immunoassays (high sensitivity and selectivity) with those of electrochemical biosensors (quantitative electrical signal). However, the complex network of mass-transfer, catalysis, and electrochemical reaction steps that produce the electrical signal makes the design and optimization of EI systems challenging. This paper presents an integrated experimental and modeling framework to address this challenge. The framework includes (1) a mechanistic mathematical model that describes the rate of key mass-transfer and reaction steps; (2) a statistical-design-of-experiments study to optimize operating conditions and validate the mechanistic model; and (3) a novel dimensional analysis to assess the degree to which individual mass-transfer and reaction steps limit the EI’s signal amplitude and sensitivity. The validated mechanistic model was able to predict the effect of four independent variables (working electrode overpotential, pH, and concentrations of catechol and hydrogen peroxide) on the EI’s signal magnitude. The model was then used to calculate dimensionless groups, including Damkohler numbers, novel current-control coefficients, and sensitivity-control coefficients that indicated the extent to which the individual mass-transfer or reaction steps limited the EI’s signal amplitude and sensitivity.


Volume 3 ◽  
2004 ◽  
Author(s):  
Siamack A. Shirazi ◽  
Ebrahin Al-Adsani ◽  
John R. Shadley ◽  
Edmund F. Rybicki

The mass transfer coefficient plays an important role in predicting corrosion rates. Using similarities between heat and mass transfer mechanisms, a mechanistic model is proposed to predict heat and mass transfer coefficients for two-phase flow in vertical pipes. The mechanistic model is evaluated by using water-air heat transfer experimental data obtained from the literature. The mechanistic model is also compared with commonly used empirical correlations. In comparison with available heat transfer correlations, the mechanistic model performs very well for vertical annular flow, bubbly flow and slug or intermittent flow that were considered. The mechanistic model is based on physics of two-phase flow and thus is expected to be more general than empirical correlations.


Author(s):  
Dawei Wang ◽  
Rajesh Patel ◽  
Chao Zhu ◽  
Teh C. Ho

A mechanistic model that to provide a quantitative understanding of the interplay of hydrodynamics, heat/mass transfer, and cracking reactions in the feed injection zone of a fluid catalytic cracking (FCC) riser reactor with a single nozzle spray. With the injection of an oil spray into a gas-solid flow, the collision between cold oil droplets and hot catalyst particles results in a strong momentum transfer that affects the spray hydrodynamics in terms of penetration and scattering. It also causes a significant heat transfer giving rise to rapid droplet vaporization and the attendant cooling of the catalyst. The presence of cracking reactions introduces volume expansion, changes in gas composition and volume fraction, and a cooling effect due to endothermicity. Accordingly, we in this study present an analysis of chemically-induced “entrance effects” in an FCC riser with a single nozzle spray. The cracking reaction network is described by a four-lump reaction model, while the ambient gas-solid transport is represented by a dense-phase riser flow. A Lagrangian modeling approach is adopted to track the spray trajectory as cracking reactions proceed. It is shown that cracking reactions play an important role in dictating the spray behavior, reaction and heat/mass transfer characteristics in the feed injection zone of an FCC riser.


Sign in / Sign up

Export Citation Format

Share Document