scholarly journals Integrated Experimental and Theoretical Studies on an Electrochemical Immunosensor

Biosensors ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 144
Author(s):  
Neda Rafat ◽  
Paul Satoh ◽  
Scott Calabrese Barton ◽  
Robert Mark Worden

Electrochemical immunosensors (EIs) integrate biorecognition molecules (e.g., antibodies) with redox enzymes (e.g., horseradish peroxidase) to combine the advantages of immunoassays (high sensitivity and selectivity) with those of electrochemical biosensors (quantitative electrical signal). However, the complex network of mass-transfer, catalysis, and electrochemical reaction steps that produce the electrical signal makes the design and optimization of EI systems challenging. This paper presents an integrated experimental and modeling framework to address this challenge. The framework includes (1) a mechanistic mathematical model that describes the rate of key mass-transfer and reaction steps; (2) a statistical-design-of-experiments study to optimize operating conditions and validate the mechanistic model; and (3) a novel dimensional analysis to assess the degree to which individual mass-transfer and reaction steps limit the EI’s signal amplitude and sensitivity. The validated mechanistic model was able to predict the effect of four independent variables (working electrode overpotential, pH, and concentrations of catechol and hydrogen peroxide) on the EI’s signal magnitude. The model was then used to calculate dimensionless groups, including Damkohler numbers, novel current-control coefficients, and sensitivity-control coefficients that indicated the extent to which the individual mass-transfer or reaction steps limited the EI’s signal amplitude and sensitivity.

2021 ◽  
Author(s):  
Chayan Das ◽  
Rohit Gupta ◽  
Saikat Halder ◽  
Amitava Datta ◽  
Ranjan Ganguly

Abstract The process involving heat and mass transfer during filmwise condensation (FWC) in presence of non-condensable gases (NCG) has great significance in a large variety of engineering applications. The vapor mass flux leading to condensation and the resulting condensation heat transfer coefficient (CHTC) are dependent on the gradients of temperature and vapor mass fraction established near the condenser plate. The effects of the two most influencing thermodynamic parameters, i.e., the degree of subcooling and the difference of humidity ratio (between the free stream environment and on the condenser plate), have been characterized in this work both experimentally and through a mechanistic model. The vapor mass flux during condensation on a subcooled vertical superhydrophilic surface under a free convection regime is experimentally measured in a controlled environment (temperature and humidity) chamber. A mechanistic model, based on the similarity of energy and species transports, is formulated for the thermogravitational boundary layer over the condenser plate and tuned against the experimental results. Further, the model is used to obtain comprehensive data of the condensate mass flux and CHTC as functions of the salient thermal operating conditions over a wide parametric range. Results indicate that humidity ratio difference has a more pronounced influence on the condensation mass transfer rather than the degree of subcooling. The mechanistic model lends to the development of empirical correlations of condensate mass flux and CHTC as explicit functions of these two parameters for easy use in practical FWC configurations.


Biosensors ◽  
2021 ◽  
Vol 11 (11) ◽  
pp. 459
Author(s):  
Neda Rafat ◽  
Paul Satoh ◽  
Robert Mark Worden

A novel, integrated experimental and modeling framework was applied to an inhibition-based bi-enzyme (IBE) electrochemical biosensor to detect acetylcholinesterase (AChE) inhibitors that may trigger neurological diseases. The biosensor was fabricated by co-immobilizing AChE and tyrosinase (Tyr) on the gold working electrode of a screen-printed electrode (SPE) array. The reaction chemistry included a redox-recycle amplification mechanism to improve the biosensor’s current output and sensitivity. A mechanistic mathematical model of the biosensor was used to simulate key diffusion and reaction steps, including diffusion of AChE’s reactant (phenylacetate) and inhibitor, the reaction kinetics of the two enzymes, and electrochemical reaction kinetics at the SPE’s working electrode. The model was validated by showing that it could reproduce a steady-state biosensor current as a function of the inhibitor (PMSF) concentration and unsteady-state dynamics of the biosensor current following the addition of a reactant (phenylacetate) and inhibitor phenylmethylsulfonylfluoride). The model’s utility for characterizing and optimizing biosensor performance was then demonstrated. It was used to calculate the sensitivity of the biosensor’s current output and the redox-recycle amplification factor as a function of experimental variables. It was used to calculate dimensionless Damkohler numbers and current-control coefficients that indicated the degree to which individual diffusion and reaction steps limited the biosensor’s output current. Finally, the model’s utility in designing IBE biosensors and operating conditions that achieve specific performance criteria was discussed.


Water ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 463
Author(s):  
Gopinathan R. Abhijith ◽  
Leonid Kadinski ◽  
Avi Ostfeld

The formation of bacterial regrowth and disinfection by-products is ubiquitous in chlorinated water distribution systems (WDSs) operated with organic loads. A generic, easy-to-use mechanistic model describing the fundamental processes governing the interrelationship between chlorine, total organic carbon (TOC), and bacteria to analyze the spatiotemporal water quality variations in WDSs was developed using EPANET-MSX. The representation of multispecies reactions was simplified to minimize the interdependent model parameters. The physicochemical/biological processes that cannot be experimentally determined were neglected. The effects of source water characteristics and water residence time on controlling bacterial regrowth and Trihalomethane (THM) formation in two well-tested systems under chlorinated and non-chlorinated conditions were analyzed by applying the model. The results established that a 100% increase in the free chlorine concentration and a 50% reduction in the TOC at the source effectuated a 5.87 log scale decrement in the bacteriological activity at the expense of a 60% increase in THM formation. The sensitivity study showed the impact of the operating conditions and the network characteristics in determining parameter sensitivities to model outputs. The maximum specific growth rate constant for bulk phase bacteria was found to be the most sensitive parameter to the predicted bacterial regrowth.


2021 ◽  
Vol 13 (11) ◽  
pp. 6388
Author(s):  
Karim M. El-Sharawy ◽  
Hatem Y. Diab ◽  
Mahmoud O. Abdelsalam ◽  
Mostafa I. Marei

This article presents a control strategy that enables both islanded and grid-tied operations of a three-phase inverter in distributed generation. This distributed generation (DG) is based on a dramatically evolved direct current (DC) source. A unified control strategy is introduced to operate the interface in either the isolated or grid-connected modes. The proposed control system is based on the instantaneous tracking of the active power flow in order to achieve current control in the grid-connected mode and retain the stability of the frequency using phase-locked loop (PLL) circuits at the point of common coupling (PCC), in addition to managing the reactive power supplied to the grid. On the other side, the proposed control system is also based on the instantaneous tracking of the voltage to achieve the voltage control in the standalone mode and retain the stability of the frequency by using another circuit including a special equation (wt = 2πft, f = 50 Hz). This utilization provides the ability to obtain voltage stability across the critical load. One benefit of the proposed control strategy is that the design of the controller remains unconverted for other operating conditions. The simulation results are added to evaluate the performance of the proposed control technology using a different method; the first method used basic proportional integration (PI) controllers, and the second method used adaptive proportional integration (PI) controllers, i.e., an Artificial Neural Network (ANN).


2011 ◽  
Vol 347-353 ◽  
pp. 372-375 ◽  
Author(s):  
Wei Qiu Huang ◽  
Feng Li ◽  
Shu Hua Zhao ◽  
Jing Zhong

A pilot-scale experimental system of filling gasoline into a tank was built to investigate gasoline vapor-air mass transfer in the tank gas space and the vapor evaporation loss from the tank in different operating conditions. The results showed that the higher the location of filling pipe exit inside the tank, the quicker the speed of the filling gasoline, and the higher the initial vapor concentration in the tank gas space, then the more severe the vapor-air convective transport and the larger the gasoline evaporation loss rates.


2020 ◽  
Vol 0 (0) ◽  
Author(s):  
Mahmoud M. A. Eid ◽  
Ahmed Nabih Zaki Rashed ◽  
Md. Anowar Kabir ◽  
Md. Mehedi Hassan

AbstractThis work demonstrates how to measure jitter using the eye diagram Analyzer histogram feature. Bit sequence generator is employed with the NRZ Pulse generator with the electrical jitter in order to measure the signal amplitude level. We have modulated the light signal from CW Laser with the electrical signal by Mach-Zehnder Modulator through 5 km fiber cables. The signal can be amplified with a gain of 7 dB with the presence of transimpedence amplifier. The combination of electrical signal and signal from noise source can be filtered by using the low pass Gaussian filter.


Author(s):  
Joonguen Park ◽  
Shinku Lee ◽  
Sunyoung Kim ◽  
Joongmyeon Bae

This paper discusses a numerical analysis of the heat and mass transfer characteristics in an autothermal methane reformer. Assuming local thermal equilibrium between the bulk gas and the surface of the catalyst, a one-medium approach for the porous medium analysis was incorporated. Also, the mass transfer between the bulk gas and the catalyst’s surface was neglected due to the relatively low gas velocity. For the catalytic surface reaction, the Langmuir–Hinshelwood model was incorporated in which methane (CH4) is reformed to hydrogen-rich gases by the autothermal reforming (ATR) reaction. Full combustion, steam reforming, water-gas shift, and direct steam reforming reactions were included in the chemical reaction model. Mass, momentum, energy, and species balance equations were simultaneously calculated with the chemical reactions for the multiphysics analysis. By varying the four operating conditions (inlet temperature, oxygen to carbon ratio (OCR), steam to carbon ratio, and gas hourly space velocity (GHSV)), the performance of the ATR reactor was estimated by the numerical calculations. The SR reaction rate was improved by an increased inlet temperature. The reforming efficiency and the fuel conversion reached their maximum values at an OCR of 0.7. When the GHSV was increased, the reforming efficiency increased but the large pressure drop may decrease the system efficiency. From these results, we can estimate the optimal operating conditions for the production of large amounts of hydrogen from methane.


2010 ◽  
Vol 133 (3) ◽  
Author(s):  
Amit Halder ◽  
Ashish Dhall ◽  
Ashim K. Datta

Fundamental, physics-based modeling of complex food processes is still in the developmental stages. This lack of development can be attributed to complexities in both the material and transport processes. Society has a critical need for automating food processes (both in industry and at home) while improving quality and making food safe. Product, process, and equipment designs in food manufacturing require a more detailed understanding of food processes that is possible only through physics-based modeling. The objectives of this paper are (1) to develop a general multicomponent and multiphase modeling framework that can be used for different thermal food processes and can be implemented in commercially available software (for wider use) and (2) to apply the model to the simulation of deep-fat frying and hamburger cooking processes and validate the results. Treating food material as a porous medium, heat and mass transfer inside such material during its thermal processing is described using equations for mass and energy conservation that include binary diffusion, capillary and convective modes of transport, and physicochemical changes in the solid matrix that include phase changes such as melting of fat and water and evaporation/condensation of water. Evaporation/condensation is considered to be distributed throughout the domain and is described by a novel nonequilibrium formulation whose parameters have been discussed in detail. Two complex food processes, deep-fat frying and contact heating of a hamburger patty, representing a large group of common food thermal processes with similar physics have been implemented using the modeling framework. The predictions are validated with experimental results from the literature. As the food (a porous hygroscopic material) is heated from the surface, a zone of evaporation moves from the surface to the interior. Mass transfer due to the pressure gradient (from evaporation) is significant. As temperature rises, the properties of the solid matrix change and the phases of frozen water and fat become transportable, thus affecting the transport processes significantly. Because the modeling framework is general and formulated in a manner that makes it implementable in commercial software, it can be very useful in computer-aided food manufacturing. Beyond its immediate applicability in food processing, such a comprehensive model can be useful in medicine (for thermal therapies such as laser surgery), soil remediation, nuclear waste treatment, and other fields where heat and mass transfer takes place in porous media with significant evaporation and other phase changes.


2019 ◽  
Vol 41 (5) ◽  
pp. 820-820
Author(s):  
Pongayi Ponnusamy Selvi and Rajoo Baskar Pongayi Ponnusamy Selvi and Rajoo Baskar

The acidic gas, Carbon dioxide (CO2) absorption in aqueous ammonia solvent was carried as an example for industrial gaseous treatment. The packed column was provided with a novel structured BX-DX packing material. The overall mass transfer coefficient was calculated from the absorption efficiency of the various runs. Due to the high solubility of CO2, mass transfer was shown to be mainly controlled by gas side transfer rates. The effects of different operating parameters on KGav including CO2 partial pressure, total gas flow rates, volume flow rate of aqueous ammonia solution, aqueous ammonia concentration, and reaction temperature were investigated. For a particular system and operating conditions structured packing provides higher mass transfer coefficient than that of commercial random packing.


Sign in / Sign up

Export Citation Format

Share Document