Human milk oligosaccharides affect P-selectin binding capacities: In vitro investigation

Nutrition ◽  
2006 ◽  
Vol 22 (6) ◽  
pp. 620-627 ◽  
Author(s):  
Gabriele Schumacher ◽  
Gerd Bendas ◽  
Bernd Stahl ◽  
Christopher Beermann
2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Ioannis Kostopoulos ◽  
Janneke Elzinga ◽  
Noora Ottman ◽  
Jay T. Klievink ◽  
Bernadet Blijenberg ◽  
...  

2012 ◽  
Vol 108 (10) ◽  
pp. 1839-1846 ◽  
Author(s):  
Evelyn Jantscher-Krenn ◽  
Tineke Lauwaet ◽  
Laura A. Bliss ◽  
Sharon L. Reed ◽  
Frances D. Gillin ◽  
...  

Human milk oligosaccharides (HMO), complex sugars that are highly abundant in breast milk, block viral and bacterial attachment to the infant's intestinal epithelium and lower the risk of infections. We hypothesised that HMO also prevent infections with the protozoan parasiteEntamoeba histolytica,as its major virulence factor is a lectin that facilitates parasite attachment and cytotoxicity and binds galactose (Gal) andN-acetyl-galactosamine. HMO contain Gal, are only minimally digested in the small intestine and reach the colon, the site ofE. histolyticainfection. The objective of the present study was to investigate whether HMO reduceE. histolyticaattachment and cytotoxicity. Ourin vitroresults show that physiological concentrations of isolated, pooled HMO detachE. histolyticaby more than 80 %. In addition, HMO rescueE. histolytica-induced destruction of human intestinal epithelial HT-29 cells in a dose-dependent manner. The cytoprotective effects were structure-specific. Lacto-N-tetraose with its terminal Gal rescued up to 80 % of the HT-29 cells, while HMO with fucose α1–2-linked to the terminal Gal had no effect. Galacto-oligosaccharides (GOS), which also contain terminal Gal and are currently added to infant formula to mimic some of the beneficial effects of HMO, completely abolishedE. histolyticaattachment and cytotoxicity at 8 mg/ml. Although our results need to be confirmedin vivo, they may provide one explanation for why breast-fed infants are at lower risk ofE. histolyticainfections. HMO and GOS are heat tolerant, stable, safe and in the case of GOS, inexpensive, which could make them valuable candidates as alternative preventive and therapeutic anti-amoebic agents.


2017 ◽  
Vol 8 (2) ◽  
pp. 281-289 ◽  
Author(s):  
S. Musilova ◽  
N. Modrackova ◽  
P. Hermanova ◽  
T. Hudcovic ◽  
R. Svejstil ◽  
...  

The mode of delivery plays a crucial role in infant gastrointestinal tract colonisation, which in the case of caesarean section is characterised by the presence of clostridia and low bifidobacterial counts. Gut colonisation can be modified by probiotics, prebiotics or synbiotics. Human milk oligosaccharides (HMOs) are infant prebiotics that show a bifidogenic effect. Moreover, genome sequencing of Bifidobacterium longum subsp. infantis within the infant microbiome revealed adaptations for milk utilisation. This study aimed to evaluate the synbiotic effect of B. longum subsp. infantis, HMOs and human milk (HM) both in vitro and in vivo (in a humanised mouse model) in the presence of faecal microbiota from infants born by caesarean section. The combination of B. longum and HMOs or HM reduced the clostridia and G-bacteria counts both in vitro and in vivo. The bifidobacterial population in vitro significantly increased and produce high concentrations of acetate and lactate. In vitro competition assays confirmed that the tested bifidobacterial strain is a potential probiotic for infants and, together with HMOs or HM, acts as a synbiotic. It is also able to inhibit potentially pathogenic bacteria. The synbiotic effects identified in vitro were not observed in vivo. However, there was a significant reduction in clostridia counts in both experimental animal groups (HMOs + B. longum and HM + B. longum), and a specific immune response via increased interleukin (IL)-10 and IL-6 production. Animal models do not perfectly mimic human conditions; however, they are essential for testing the safety of functional foods.


2015 ◽  
Vol 63 (12) ◽  
pp. 3295-3302 ◽  
Author(s):  
Jennifer L. Hoeflinger ◽  
Steven R. Davis ◽  
JoMay Chow ◽  
Michael J. Miller

2015 ◽  
Vol 9 (9) ◽  
pp. 565-571 ◽  
Author(s):  
KRAUSOVA Gabriela ◽  
RADA Vojtech ◽  
MARSIK Petr ◽  
MUSILOVA Sarka ◽  
SVEJSTIL Roman ◽  
...  

Nutrients ◽  
2020 ◽  
Vol 12 (11) ◽  
pp. 3568
Author(s):  
Christian Hundshammer ◽  
Oliver Minge

Human milk oligosaccharides (HMOs) are structurally versatile sugar molecules constituting the third major group of soluble components in human breast milk. Based on the disaccharide lactose, the mammary glands of future and lactating mothers produce a few hundreds of different HMOs implicating that their overall anabolism utilizes rather high amounts of energy. At first sight, it therefore seems contradictory that these sugars are indigestible for infants raising the question of why such an energy-intensive molecular class evolved. However, in-depth analysis of their molecular modes of action reveals that Mother Nature created HMOs for neonatal development, protection and promotion of health. This is not solely facilitated by HMOs in their indigestible form but also by catabolites that are generated by microbial metabolism in the neonatal gut additionally qualifying HMOs as natural prebiotics. This narrative review elucidates factors influencing the HMO composition as well as physiological roles of HMOs on their way through the infant body and within the gut, where a major portion of HMOs faces microbial catabolism. Concurrently, this work summarizes in vitro, preclinical and observational as well as interventional clinical studies that analyzed potential health effects that have been demonstrated by or were related to either human milk-derived or synthetic HMOs or HMO fractions.


Sign in / Sign up

Export Citation Format

Share Document