Determination of environmental load factors for ISO 19902 code in offshore Malaysia using FORM structural reliability method

2014 ◽  
Vol 92 ◽  
pp. 31-43 ◽  
Author(s):  
Z. Nizamani ◽  
V.J. Kurian ◽  
M.S. Liew
Author(s):  
J.I. Aguwa ◽  
S. Sadiku

This paper provides the results of structural reliability analysis carried out on the data of Nigerian grown Iroko tree (Chlorophora excelsa), to ascertain its structural performance as timber bridge beams. Five pieces of 50mm x 75mm x 3600mm of Nigerian grown Iroko hardwood were bought, seasoned naturally and 200 pieces of samples were prepared for determination of their strength properties, (which include bending strength parallel to grain, tensile strength parallel to grain, compressive strength parallel to grain, compressive strength perpendicular to grain and shear strength parallel to grain) at a moisture content of 18%, in accordance with the British Standard BS 373 of 1957. Statistical analysis was carried out using the strength properties for determination of mean, standard deviation, coefficient of variations, confidence limits and Chi-Square goodness of fits. Structural analysis and design of a timber bridge beam using the determined data from the Nigerian grown Iroko timber, in accordance with BS 5268 were carried out under the Ultimate Limit State of loading (ULSL). Reliability analysis was carried out to ascertain its level of safety using First-Order Reliability Method (FORM). Sensitivity analysis was also carried out by varying the depth of beam, imposed live load, breadth of the beam, unit weight of the Iroko timber, span of the beam as well as the end bearing length. The result revealed that the Nigerian grown Iroko timber is a satisfactory structural material for timber bridge beams at depth of 400mm, breadth of 150mm and span of 5000mm under the ULSL. The probabilities of failure of the Nigerian grown Iroko timber bridge beam in bending, shear, compression and deflection are respectively, under the specified conditions of loading.


Materials ◽  
2021 ◽  
Vol 14 (8) ◽  
pp. 1820
Author(s):  
Mohamed El Amine Ben Seghier ◽  
Behrooz Keshtegar ◽  
Hussam Mahmoud

Reinforced concrete (RC) beams are basic elements used in the construction of various structures and infrastructural systems. When exposed to harsh environmental conditions, the integrity of RC beams could be compromised as a result of various deterioration mechanisms. One of the most common deterioration mechanisms is the formation of different types of corrosion in the steel reinforcements of the beams, which could impact the overall reliability of the beam. Existing classical reliability analysis methods have shown unstable results when used for the assessment of highly nonlinear problems, such as corroded RC beams. To that end, the main purpose of this paper is to explore the use of a structural reliability method for the multi-state assessment of corroded RC beams. To do so, an improved reliability method, namely the three-term conjugate map (TCM) based on the first order reliability method (FORM), is used. The application of the TCM method to identify the multi-state failure of RC beams is validated against various well-known structural reliability-based FORM formulations. The limit state function (LSF) for corroded RC beams is formulated in accordance with two corrosion types, namely uniform and pitting corrosion, and with consideration of brittle fracture due to the pit-to-crack transition probability. The time-dependent reliability analyses conducted in this study are also used to assess the influence of various parameters on the resulting failure probability of the corroded beams. The results show that the nominal bar diameter, corrosion initiation rate, and the external loads have an important influence on the safety of these structures. In addition, the proposed method is shown to outperform other reliability-based FORM formulations in predicting the level of reliability in RC beams.


Author(s):  
Eric Brehm ◽  
Robert Hertle ◽  
Markus Wetzel

In common structural design, random variables, such as material strength or loads, are represented by fixed numbers defined in design codes. This is also referred to as deterministic design. Addressing the random character of these variables directly, the probabilistic design procedure allows the determination of the probability of exceeding a defined limit state. This probability is referred to as failure probability. From there, the structural reliability, representing the survival probability, can be determined. Structural reliability thus is a property of a structure or structural member, depending on the relevant limit states, failure modes and basic variables. This is the basis for the determination of partial safety factors which are, for sake of a simpler design, applied within deterministic design procedures. In addition to the basic variables in terms of material and loads, further basic variables representing the structural model have to be considered. These depend strongly on the experience of the design engineer and the level of detailing of the model. However, in the clear majority of cases [1] failure does not occur due to unexpectedly high or low values of loads or material strength. The most common reasons for failure are human errors in design and execution. This paper will provide practical examples of original designs affected by human error and will assess the impact on structural reliability.


Manufacturing ◽  
2003 ◽  
Author(s):  
L. Shelley Xie ◽  
Agus Sudjianto

A new FEA based design approach of optimal robust fixture configuration is proposed in this paper, which employs a surrogate model through computer experiment to significantly reduce the intensive computing effort involving numerous FEA system response evaluations. The effects of the fixture variability to the workpiece performance variability are assessed through an efficient robustness evaluation method, First Order Reliability Method (FORM), based on the surrogate computer model. Not restricted to primary datum surface, this new approach enables simultaneous determination of robust locator/clamp locations and clamping forces for a deformable workpiece and thus captures interaction between locating and clamping. The effectiveness of this approach is illustrated though an application example. The results of robustness analysis reveal new information and suggest that the optimal solution resulted from deterministic optimization may not be the best solution when the design is subjected to variability.


Author(s):  
Zhenzhong Chen ◽  
Zihao Wu ◽  
Xiaoke Li ◽  
Ge Chen ◽  
Guangfeng Chen ◽  
...  

The first-order reliability method is widely used for structural reliability analysis; however, its accuracy would become worse for nonlinear problems. This paper proposes the accuracy analysis method of the first-order reliability method, which considers the worst cases when using the first-order reliability method and gives the possible value range of the probability of safety. The accuracy analysis method can evaluate the reliability level of the first-order reliability method when the failure surfaces are nonlinear. The calculation formula for the possible value range of the probability of safety is proposed, and its trend as the dimensions and reliability rise is also discussed in this paper. A numerical example and a honeycomb crashworthiness design are presented to validate the accuracy of the first-order reliability method, and the results show that they are located within the possible value range proposed in this paper.


2011 ◽  
Vol 230-232 ◽  
pp. 920-924
Author(s):  
Kun Feng Li ◽  
Zi Chun Yang ◽  
Gui Feng Liu

When insufficient data are available, probabilistic reliability method is invalid, but the non-probabilistic reliability method based on I-G (information-gap) model is a valid alternative. The most common I-G model, ellipsoidal-bound model, has been updated in this paper by acquiring information about span restrictions of uncertainty quantities and a corresponding non-probabilistic reliability index was proposed. The method for computing the reliability index was also given. The new model can reveal the influence of the span restriction of uncertainty quantities on structural reliability.


2018 ◽  
Vol 140 (8) ◽  
Author(s):  
Rami Mansour ◽  
Mårten Olsson

Reliability assessment is an important procedure in engineering design in which the probability of failure or equivalently the probability of survival is computed based on appropriate design criteria and model behavior. In this paper, a new approximate and efficient reliability assessment method is proposed: the conditional probability method (CPM). Focus is set on computational efficiency and the proposed method is applied to classical load-strength structural reliability problems. The core of the approach is in the computation of the probability of failure starting from the conditional probability of failure given the load. The number of function evaluations to compute the probability of failure is a priori known to be 3n + 2 in CPM, where n is the number of stochastic design variables excluding the strength. The necessary number of function evaluations for the reliability assessment, which may correspond to expensive computations, is therefore substantially lower in CPM than in the existing structural reliability methods such as the widely used first-order reliability method (FORM).


2018 ◽  
Vol 7 (4.35) ◽  
pp. 210
Author(s):  
Nurul Sa’aadah Sulaiman ◽  
Henry Tan

Maintenance and integrity management of hydrocarbons pipelines face the challenges from uncertainties in the data available. This paper demonstrates a way for pipeline remaining service life prediction that integrates structural reliability analysis, accumulated corrosion knowledge, and inspection data on a sound mathematical foundation. Pipeline defects depth grows with time according to an empirical corrosion power law, and this is checked for leakage and rupture probability. The pipeline operating pressure is checked with the degraded failure pressure given by ASME B31G code for rupture likelihood. As corrosion process evolves with time, Dynamic Bayesian Network (DBN) is employed to model the stochastic corrosion deterioration process. From the results obtained, the proposed DBN model for pipeline reliability is advanced compared with other traditional structural reliability method whereby the updating ability brings in more accurate prediction results of structural reliability. The comparisons show that the DBN model can achieve a realistic result similar to the conventional method, Monte Carlo Simulation with very minor discrepancy.


Sign in / Sign up

Export Citation Format

Share Document