Flow-induced vibration of two tandemly arranged circular cylinders with attached splitter plates

2021 ◽  
Vol 237 ◽  
pp. 109604
Author(s):  
Yasser Amini ◽  
Iman Zahed
2021 ◽  
Vol 225 ◽  
pp. 108806
Author(s):  
Qunfeng Zou ◽  
Lin Ding ◽  
Rui Zou ◽  
Hao Kong ◽  
Haibo Wang ◽  
...  

Author(s):  
M. Eaddy ◽  
W. H. Melbourne ◽  
J. Sheridan

The problem of flow-induced vibration has been studied extensively. However, much of this research has focused on the smooth cylinder to gain an understanding of the mechanisms that cause vortex-induced vibration. In this paper results of an investigation of the effect of surface roughness on the cross-wind forces are presented. Measurements of the sectional RMS fluctuating lift forces and the axial correlation of the pressures for Reynolds numbers from 1 × 105 to 1.4 × 106 are given. It was found that surface roughness significantly increased the axial correlation of the pressures to similar values found at high subcritical Reynolds numbers. There was little effect of the surface roughness on the sectional lift forces. The improved correlation of the vortex shedding means rough cylinders will be subject to larger cross-wind forces and an increased possibility of vortex-induced vibration compared to smooth cylinders.


Author(s):  
Rodolfo T. Gonçalves ◽  
Dênnis M. Gambarine ◽  
Felipe P. Figueiredo ◽  
Fábio V. Amorim ◽  
André L. C. Fujarra

Experiments regarding flow-induced vibration on floating squared section cylinders with low aspect ratio were carried out in an ocean basin with rotating-arm apparatus. The floating squared section cylinders were elastically supported by a set of linear springs to provide low structural damping to the system. Three different aspect ratios were tested, namely L/D = 1.0, 2.0 and 3.0, and two different incidence angles, namely 0 and 45 degrees. The aims were to understanding the flow-induced vibration around single columns of multi-column platforms, such as semi-submersible and TLP. VIV on circular cylinders were also carried out to compare the results. The range of Reynolds number covered was 2,000 < Re < 27,000. The in-line and transverse amplitude results showed to be higher for 45-degree incidence compared with 0-degree, but the maximum amplitudes for squared section cylinders were lower compared with the circular ones. The double frequency in the in-line motion was not verified as in circular cylinders. The yaw amplitudes cannot be neglected for squared section cylinders, maximum yaw amplitudes around 10 degrees were observed for reduced velocities up to 15.


2020 ◽  
Vol 105 ◽  
pp. 102406 ◽  
Author(s):  
A. Bakhtiari ◽  
M. Zeinoddini ◽  
H. Ashrafipour ◽  
V. Tamimi

Author(s):  
Gustavo R. S. Assi ◽  
Peter W. Bearman ◽  
Julio R. Meneghini

This paper presents force measurements during flow-induced vibration of a pair of circular cylinders with low mass ratio (m* = 2.0) and low damping (ζ = 0.7%) aligned in a tandem arrangement. A particular case with a gap of 3 diameters centre to centre is used to examine flow-interference mechanisms occurring on a downstream cylinder, free to oscillate only in the transverse direction. The Reynolds number varies within the range 1500 &lt; Re &lt; 20000. A cylinder immersed in the wake of another can develop flow-induced oscillations persisting for a large range of reduced velocities. Oscillations are observed for reduced velocities, based on cylinder natural frequency measured in air, as high as 35. Apparently, the amplitude of oscillation is reaching a level of saturation of about 1.5 diameters, while the frequency of vibration is increasing at an approximate constant rate. As reduced velocity is increased two regimes of flow-induced vibration are observed: first vortex-induced vibration and then a wake-induced vibration regime. In addition, the presence of the second cylinder affects the dynamics of the upstream wake, but it is found not to synchronize the vortex shedding frequency of the upstream cylinder for the second regime of oscillations.


1986 ◽  
Vol 108 (4) ◽  
pp. 382-393 ◽  
Author(s):  
S. S. Chen

The flow field around a pair of rigid circular cylinders is very complex and has been studied extensively. When either one or both cylinders vibrate, the flow field becomes significantly more complicated because of the interaction of the fluid flow and the cylinder motion. This paper presents an overview of the problem including different flow regimes, vortex-excited vibration, and fluidelastic instability for two cylinders in tandem, two cylinders side by side and two cylinders in staggered arrangement. A general formulation to study dynamic response under different conditions is outlined and future research needs are discussed.


Experiments on the near wake of a cylinder will be discribed in an attempt to present a coherent picture of the events encountered as the Reynolds number increases from small values up to values of a few thousand. Much work on this subject has already been done, but there are gaps in our description of these flows as well as more fundamental deficiencies in our understanding of them. The subject has been reviewed several times and most recently by Berger & Wille (1972) whose paper covers much of the ground that will be discussed again here. The present work may be regarded as built upon this latest review. I remember with gratitude many helpful discussions with the late Rudolph Wille who contributed so much to this subject. The investigation has concentrated on circular cylinders, but the wakes of bluff cylinders of different cross sectional shapes have also been observed. Bluff cylinders in general are considered in §§4 and 5, together with the effect of splitter plates on circular cylinders in §9. The experiments concern, almost exclusively, flow visualization of the wakes by means of dye washed from the bodies. The patterns of dye observed are, therefore, filament line representations of the flow leaving the separation lines on the body. It must be stressed that the dye does not make visible the vorticity bearing fluid because at low Reynolds number, vorticity diffuses considerably more rapidly than does dye. The ratio of the molecular diffusivity of momentum to that of mass of dye is of the order of 100.


2006 ◽  
Vol 22 (6-7) ◽  
pp. 819-827 ◽  
Author(s):  
G.R.S. Assi ◽  
J.R. Meneghini ◽  
J.A.P. Aranha ◽  
P.W. Bearman ◽  
E. Casaprima

Sign in / Sign up

Export Citation Format

Share Document