scholarly journals Nonclinical Studies that Support Viral Vector-Delivered Gene Therapies: An EFPIA Gene Therapy Working Group Perspective

2020 ◽  
Vol 19 ◽  
pp. 89-98
Author(s):  
Michael W. Bolt ◽  
Laurence O. Whiteley ◽  
Jessica L. Lynch ◽  
Brian Lauritzen ◽  
Antonio R. Fernández de Henestrosa ◽  
...  
Pharmaceutics ◽  
2021 ◽  
Vol 13 (4) ◽  
pp. 586
Author(s):  
Liam Cole ◽  
Diogo Fernandes ◽  
Maryam T. Hussain ◽  
Michael Kaszuba ◽  
John Stenson ◽  
...  

Viruses are increasingly used as vectors for delivery of genetic material for gene therapy and vaccine applications. Recombinant adeno-associated viruses (rAAVs) are a class of viral vector that is being investigated intensively in the development of gene therapies. To develop efficient rAAV therapies produced through controlled and economical manufacturing processes, multiple challenges need to be addressed starting from viral capsid design through identification of optimal process and formulation conditions to comprehensive quality control. Addressing these challenges requires fit-for-purpose analytics for extensive characterization of rAAV samples including measurements of capsid or particle titer, percentage of full rAAV particles, particle size, aggregate formation, thermal stability, genome release, and capsid charge, all of which may impact critical quality attributes of the final product. Importantly, there is a need for rapid analytical solutions not relying on the use of dedicated reagents and costly reference standards. In this study, we evaluate the capabilities of dynamic light scattering, multiangle dynamic light scattering, and SEC–MALS for analyses of rAAV5 samples in a broad range of viral concentrations (titers) at different levels of genome loading, sample heterogeneity, and sample conditions. The study shows that DLS and MADLS® can be used to determine the size of full and empty rAAV5 (27 ± 0.3 and 33 ± 0.4 nm, respectively). A linear range for rAAV5 size and titer determination with MADLS was established to be 4.4 × 1011–8.7 × 1013 cp/mL for the nominally full rAAV5 samples and 3.4 × 1011–7 × 1013 cp/mL for the nominally empty rAAV5 samples with 3–8% and 10–37% CV for the full and empty rAAV5 samples, respectively. The structural stability and viral load release were also inferred from a combination of DLS, SEC–MALS, and DSC. The structural characteristics of the rAAV5 start to change from 40 °C onward, with increasing aggregation observed. With this study, we explored and demonstrated the applicability and value of orthogonal and complementary label-free technologies for enhanced serotype-independent characterization of key properties and stability profiles of rAAV5 samples.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Zinovia Kefalopoulou ◽  
Iciar Aviles-Olmos ◽  
Thomas Foltynie

Neural cell transplantation and gene therapy have attracted considerable interest as promising therapeutic alternatives for patients with Parkinson's disease (PD). Preclinical and open-label studies have suggested that grafted fetal neural tissue or viral vector gene transfer can achieve considerable biochemical and clinical improvements, whereas subsequent double-blind, placebo-controlled protocols have produced rather more modest and variable results. Detailed evaluation of these discordant findings has highlighted several crucial issues such as patient selection criteria, details surrounding transplantation or gene therapy methodologies, as well as the study designs themselves that ought to be carefully considered in the planning phases of future clinical trials. Beyond the provision of symptomatic efficacy and safety data, it also remains to be identified whether the possibilities offered by stem cell and gene therapy technological advances might translate to meaningful neuroprotection and/or disease-modifying effects or alleviate the nonmotor aspects of PD and thus offer additional benefits beyond those achieved through conventional pharmacotherapy or deep brain stimulation (DBS).


2020 ◽  
pp. 62-75
Author(s):  
Reyad ul-ferdous ◽  
◽  
Shofiul Azam ◽  
◽  
◽  
...  

Background: Last decade over the world, the cardiac disease becomes a leading cause of death. Gene-based therapies become a promising treatment for patients affected by cardiovascular diseases, such as myocardial infarction (MI), arteriosclerosis, heart failure and so on, but also underline the require for reproducible results in preclinical and clinical studies for efficacy and safety. Aim: This book chapter describes the current research prospect of gene therapy for cardiac disease. We focus on the various models to deliver genes using viral, non-viral vector, delivery methods, targets gene, recent clinical trials, inherited cardiomyopathies target genes and Present advances of CRISPR/Cas 9 for cardiovascular gene therapy. We recapitulate some challenges that require being overcome, future directions of gene therapies for cardiac disease. Materials and Methods: All required information regards Lef-7 was generated by exploring the internet search engine like as (PubMed, Wiley, ScienceDirect, CNKI, ACS, Google Scholar, Web of Science, SciFinder, and Baidu Scholar) and libraries. Results: In this book chapter, we focus on the present prospect of gene targets, gene delivery methods, and efficient vector to deliver gene, targets gene, recent clinical trials, inherited cardiomyopathies target genes and present advances of CRISPR/Cas 9 technology for the treatment of cardiac disease using gene therapy. Recent clinical trials require modifying vectors and gene delivery approaches to achieve effective results for cardiac gene therapy. Conclusion: In this book chapter, we integrate a historical perspective with recent advances that will likely affect clinical development in this research area.


2020 ◽  
Vol 10 (3-s) ◽  
pp. 239-250
Author(s):  
Dhruvkumar M. Soni

The present review discusses about RNA interference (RNAi) and its significance in gene therapy. The review mainly focuses on small interference RNA (siRNA) as a mediator of RNAi, its therapeutic benefits and various formulation strategies employed to overcome siRNA delivery hurdles. RNAi is a regulatory process which occurs endogenously within the cell wherein short double-stranded RNA (siRNA) effects sequence-specific posttranscriptional gene silencing. Even though siRNA assists researchers with its powerful therapeutic benefits, there are significant hurdles in developing efficient delivery systems for its systemic administration. These are extracellular and intracellular barriers for siRNA delivery. The present review addresses about pros and cons of gene therapy and superior advantages provided by siRNA over plasmid DNA in gene therapy. It also discloses about the discovery, mechanism of action, significance and applications of siRNA based gene therapies, challenges in its delivery and strategies for overcoming delivery hurdles. Furthermore, emphasis is provided on viral and non – viral vector based siRNA delivery and the significance of lipid based siRNA delivery, the lipoplexes over polymer based siRNA delivery - the polyplexes, followed by recent advances in siRNA based technologies directed against variety of diseases. Keywords: Endosomal escape, gene therapy, lipoplexes, polyplexes, siRNA, vectors.


2014 ◽  
Vol 25 (3-4) ◽  
pp. 147-177
Author(s):  
REBECCA N. SPENCER ◽  
DAVID J. CARR ◽  
ANNA L. DAVID

The first clinical trials of gene therapy in the 1990s offered the promise of a new paradigm for the treatment of genetic diseases. Over the decades that followed the challenges and setbacks which gene therapy faced often overshadowed any successes. Despite this, recent years have seen cause for renewed optimism. In 2012 Glybera™, an adeno-associated viral vector expressing lipoprotein lipase, became the first gene therapy product to receive marketing authorisation in Europe, with a licence to treat familial lipoprotein lipase deficiency. This followed the earlier licensing in China of two gene therapies: Gendicine™ for head and neck squamous cell carcinoma and Oncorine™ for late-stage nasopharyngeal cancer. By this stage over 1800 clinical trials had been, or were being, conducted worldwide, and the therapeutic targets had expanded far beyond purely genetic disorders. So far no trials of gene therapy have been carried out in pregnancy, but an increasing understanding of the molecular mechanisms underlying obstetric diseases means that it is likely to have a role to play in the future. This review will discuss how gene therapy works, its potential application in obstetric conditions and the risks and limitations associated with its use in this setting. It will also address the ethical and regulatory issues that will be faced by any potential clinical trial of gene therapy during pregnancy.


Gene Therapy ◽  
2021 ◽  
Author(s):  
Jennifer E. Adair ◽  
Lindsay Androski ◽  
Lois Bayigga ◽  
Deus Bazira ◽  
Eugene Brandon ◽  
...  

AbstractThe gene and cell therapy field saw its first approved treatments in Europe in 2012 and the United States in 2017 and is projected to be at least a $10B USD industry by 2025. Despite this success, a massive gap exists between the companies, clinics, and researchers developing these therapeutic approaches, and their availability to the patients who need them. The unacceptable reality is a geographic exclusion of low-and middle-income countries (LMIC) in gene therapy development and ultimately the provision of gene therapies to patients in LMIC. This is particularly relevant for gene therapies to treat human immunodeficiency virus infection and hemoglobinopathies, global health crises impacting tens of millions of people primarily located in LMIC. Bridging this divide will require research, clinical and regulatory infrastructural development, capacity-building, training, an approval pathway and community adoption for success and sustainable affordability. In 2020, the Global Gene Therapy Initiative was formed to tackle the barriers to LMIC inclusion in gene therapy development. This working group includes diverse stakeholders from all sectors and has set a goal of introducing two gene therapy Phase I clinical trials in two LMIC, Uganda and India, by 2024. Here we report on progress to date for this initiative.


2021 ◽  
pp. 113710
Author(s):  
Tao Wang ◽  
Xun Zhu ◽  
Hyun Yi ◽  
Jun Gu ◽  
Shue Liu ◽  
...  

2021 ◽  
Vol 22 (14) ◽  
pp. 7545
Author(s):  
Myriam Sainz-Ramos ◽  
Idoia Gallego ◽  
Ilia Villate-Beitia ◽  
Jon Zarate ◽  
Iván Maldonado ◽  
...  

Efficient delivery of genetic material into cells is a critical process to translate gene therapy into clinical practice. In this sense, the increased knowledge acquired during past years in the molecular biology and nanotechnology fields has contributed to the development of different kinds of non-viral vector systems as a promising alternative to virus-based gene delivery counterparts. Consequently, the development of non-viral vectors has gained attention, and nowadays, gene delivery mediated by these systems is considered as the cornerstone of modern gene therapy due to relevant advantages such as low toxicity, poor immunogenicity and high packing capacity. However, despite these relevant advantages, non-viral vectors have been poorly translated into clinical success. This review addresses some critical issues that need to be considered for clinical practice application of non-viral vectors in mainstream medicine, such as efficiency, biocompatibility, long-lasting effect, route of administration, design of experimental condition or commercialization process. In addition, potential strategies for overcoming main hurdles are also addressed. Overall, this review aims to raise awareness among the scientific community and help researchers gain knowledge in the design of safe and efficient non-viral gene delivery systems for clinical applications to progress in the gene therapy field.


Biomolecules ◽  
2021 ◽  
Vol 11 (8) ◽  
pp. 1135
Author(s):  
Bhubanananda Sahu ◽  
Isha Chug ◽  
Hemant Khanna

The eye is at the forefront of developing therapies for genetic diseases. With the FDA approval of the first gene-therapy drug for a form of congenital blindness, numerous studies have been initiated to develop gene therapies for other forms of eye diseases. These examinations have revealed new information about the benefits as well as restrictions to using drug-delivery routes to the different parts of the eye. In this article, we will discuss a brief history of gene therapy and its importance to the eye and ocular delivery landscape that is currently being investigated, and provide insights into their advantages and disadvantages. Efficient delivery routes and vehicle are crucial for an effective, safe, and longer-lasting therapy.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 771
Author(s):  
Julen Rodríguez-Castejón ◽  
Ana Alarcia-Lacalle ◽  
Itziar Gómez-Aguado ◽  
Mónica Vicente-Pascual ◽  
María Ángeles Solinís Aspiazu ◽  
...  

Fabry disease (FD) is a monogenic X-linked lysosomal storage disorder caused by a deficiency in the lysosomal enzyme α-Galactosidase A (α-Gal A). It is a good candidate to be treated with gene therapy, in which moderately low levels of enzyme activity should be sufficient for clinical efficacy. In the present work we have evaluated the efficacy of a non-viral vector based on solid lipid nanoparticles (SLN) to increase α-Gal A activity in an FD mouse model after intravenous administration. The SLN-based vector incremented α-Gal A activity to about 10%, 15%, 20% and 14% of the levels of the wild-type in liver, spleen, heart and kidney, respectively. In addition, the SLN-based vector significantly increased α-Gal A activity with respect to the naked pDNA used as a control in plasma, heart and kidney. The administration of a dose per week for three weeks was more effective than a single-dose administration. Administration of the SLN-based vector did not increase liver transaminases, indicative of a lack of toxicity. Additional studies are necessary to optimize the efficacy of the system; however, these results reinforce the potential of lipid-based nanocarriers to treat FD by gene therapy.


Sign in / Sign up

Export Citation Format

Share Document