High sensitivity, broad linearity range and low detection limit flexible pressure sensors based on irregular surface microstructure

2020 ◽  
Vol 87 ◽  
pp. 105920
Author(s):  
Kun Li ◽  
Zhaoyang Li ◽  
Tong Zhang ◽  
Xiaoniu Yang
2013 ◽  
Vol 823 ◽  
pp. 291-295 ◽  
Author(s):  
Shou Chen Chai ◽  
Peng Yang ◽  
Cheng Jia Yang ◽  
Chun Li Cai ◽  
Na Yu

In the space restricted airtight environment that people lives in, detecting harmful gas by miniature gas chromatography is the practical requirement at present, however, PIDs performance is key factor that restrict the application of miniature gas chromatography, the redesign of the detectors gas route in this paper aiming at improve detectors stability observably, and schemed out miniature PID with high sensitivity, low detection limit and fast response. The result of the experiment shows that the detection limit is 0.04ppm, the sensitivity is 101mv/ppm,the stability is 0.04×10-6/24h,meeting the project requirement. Keywords: photoionization detector; ionization chamber; sensitivity; detection limit;


Toxins ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 1 ◽  
Author(s):  
Wei Ye ◽  
Taomei Liu ◽  
Weimin Zhang ◽  
Muzi Zhu ◽  
Zhaoming Liu ◽  
...  

Marine toxins cause great harm to human health through seafood, therefore, it is urgent to exploit new marine toxins detection methods with the merits of high sensitivity and specificity, low detection limit, convenience, and high efficiency. Aptasensors have emerged to replace classical detection methods for marine toxins detection. The rapid development of molecular biological approaches, sequencing technology, material science, electronics and chemical science boost the preparation and application of aptasensors. Taken together, the aptamer-based biosensors would be the best candidate for detection of the marine toxins with the merits of high sensitivity and specificity, convenience, time-saving, relatively low cost, extremely low detection limit, and high throughput, which have reduced the detection limit of marine toxins from nM to fM. This article reviews the detection of marine toxins by aptamer-based biosensors, as well as the selection approach for the systematic evolution of ligands by exponential enrichment (SELEX), the aptamer sequences. Moreover, the newest aptasensors and the future prospective are also discussed, which would provide thereotical basis for the future development of marine toxins detection by aptasensors.


RSC Advances ◽  
2017 ◽  
Vol 7 (22) ◽  
pp. 13438-13443 ◽  
Author(s):  
Jiao Liu ◽  
Hong-Wei Li ◽  
Yuqing Wu

The ultrabright AuNCs@AMP are used as fluorescence probe to detect lactate dehydrogenase (LDH) with high sensitivity and selectivity, showing an extremely low detection limit of 0.2 nM (26 pg μL−1, 0.8 U L−1).


Polymers ◽  
2021 ◽  
Vol 13 (20) ◽  
pp. 3465
Author(s):  
Jianli Cui ◽  
Xueli Nan ◽  
Guirong Shao ◽  
Huixia Sun

Researchers are showing an increasing interest in high-performance flexible pressure sensors owing to their potential uses in wearable electronics, bionic skin, and human–machine interactions, etc. However, the vast majority of these flexible pressure sensors require extensive nano-architectural design, which both complicates their manufacturing and is time-consuming. Thus, a low-cost technology which can be applied on a large scale is highly desirable for the manufacture of flexible pressure-sensitive materials that have a high sensitivity over a wide range of pressures. This work is based on the use of a three-dimensional elastic porous carbon nanotubes (CNTs) sponge as the conductive layer to fabricate a novel flexible piezoresistive sensor. The synthesis of a CNTs sponge was achieved by chemical vapor deposition, the basic underlying principle governing the sensing behavior of the CNTs sponge-based pressure sensor and was illustrated by employing in situ scanning electron microscopy. The CNTs sponge-based sensor has a quick response time of ~105 ms, a high sensitivity extending across a broad pressure range (less than 10 kPa for 809 kPa−1) and possesses an outstanding permanence over 4,000 cycles. Furthermore, a 16-pixel wireless sensor system was designed and a series of applications have been demonstrated. Its potential applications in the visualizing pressure distribution and an example of human–machine communication were also demonstrated.


2021 ◽  
Author(s):  
Siddesh Umapathi ◽  
Harish Singh ◽  
Jahangir Masud ◽  
Manashi Nath

CuSe nanostructures exhibit high-efficiency for glucose detection with high sensitivity (19.419 mA mM−1 cm−2) and selectivity at low applied potential (0.15 V vs. Ag|AgCl), low detection limit (0.196 μM) and linear detection range (100 nM to 40 μM).


Author(s):  
Yinan Zhao ◽  
Lin Liu ◽  
zhen Li ◽  
Feifei Wang ◽  
Xinxin Chen ◽  
...  

Design and development of flexible pressure sensors with high sensitivity, long-term stability and simple fabrication processes is a key procedure to fulfill the applications in wearable electronics, e-skin and medical...


2021 ◽  
pp. 2101031
Author(s):  
Da Geng ◽  
Songyue Chen ◽  
Rui Chen ◽  
Yuru You ◽  
Chiqian Xiao ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document