scholarly journals On the Stability and Performance of Remote DOE Laser Cutting

2016 ◽  
Vol 83 ◽  
pp. 1206-1216 ◽  
Author(s):  
Sigurd Lazic Villumsen ◽  
Morten Kristiansen ◽  
Flemming O. Olsen
Author(s):  
K. Muralidharan ◽  
S. Shalini Packiam Kamala ◽  
D. Alankrutha ◽  
K. Bhanu Prakash ◽  
Ram Subbiah ◽  
...  

2021 ◽  
Vol 9 (3) ◽  
pp. 290
Author(s):  
Yukai Li ◽  
Yuli Hu ◽  
Youguang Guo ◽  
Baowei Song ◽  
Zhaoyong Mao

Permanent magnet couplings can convert a dynamic seal into a static seal, thereby greatly improving the stability of the underwater propulsion unit. In order to make full use of the tail space and improve the transmitted torque capability, a conical Halbach permanent magnet coupling (C-HPMC) is proposed in this paper. The C-HPMC combines multiple cylindrical HPMCs with different sizes into an approximately conical structure. Compared with the conical permanent magnet couplings in our previous work, the novel C-HPMC has better torque performance and is easy to process. The analytical calculation method of transmitted torque of C-HPMC is proposed on the basis of torque calculation of the three common types of HPMCs. The accuracy of the torque calculation of the three HPMCs is verified, and the torque performance of the three HPMCSs of different sizes is compared and discussed. The “optimal type selection” method is proposed and applied in the design of C-HPMC. Finally, on the basis of torque analysis calculation and axial force calculation, a complete flowchart of the design and performance analysis of C-HPMC is described.


Author(s):  
Yiqi Xu

This paper studies the attitude-tracking control problem of spacecraft considering on-orbit refuelling. A time-varying inertia model is developed for spacecraft on-orbit refuelling, which actually includes two processes: fuel in the transfer pipe and fuel in the tank. Based upon the inertia model, an adaptive attitude-tracking controller is derived to guarantee the stability of the resulted closed-loop system, as well as asymptotic convergence of the attitude-tracking errors, despite performing refuelling operations. Finally, numerical simulations illustrate the effectiveness and performance of the proposed control scheme.


2011 ◽  
Vol 368-373 ◽  
pp. 2411-2416
Author(s):  
Jian Ping Han ◽  
Hai Peng Liu

Temporary or permanent supports are necessary in underground construction for maintaining the stability and limiting the damage of surrounding rock. Due to the uncertainty of geological structure, the specificity of the underground environment as well as other factors, the quality and performance of supporting structure are often difficult to satisfy the design requirements, which not only seriously affects the normal construction and operation of mines but also has the potential threat to the safety of underground production. In order to investigate the influence of the unfavorable geologic environment on supporting concrete and evaluate the real performance of roadway supports of a mine, 17 typical projects were chosen and the strength of supporting concrete was detected by nondestructive drilling core method. The result shows that the strength is widely less than the design value. Furthermore, 4 projects of them were investigated by the ground penetrating radar (GPR) in order to evaluate the feasibility of GPR in the performance investigation of the roadway supports of a mine. The results indicate that ground penetrating radar is capable of measuring the thickness of the support, the distribution of rebars and the defects of the surrounding rock.


2013 ◽  
Vol 136 (6) ◽  
Author(s):  
Subenuka Sivagnanasundaram ◽  
Stephen Spence ◽  
Juliana Early

This paper presents an investigation of map width enhancement and the performance improvement of a turbocharger compressor using a series of static vanes in the annular cavity of a classical bleed slot system. The investigation has been carried out using both experimental and numerical analysis. The compressor stage used for this study is from a turbocharger unit used in heavy duty diesel engines of approximately 300 kW. Two types of vanes were designed and added to the annular cavity of the baseline classical bleed slot system. The purpose of the annular cavity vane technique is to remove some of the swirl that can be carried through the bleed slot system, which would influence the pressure ratio. In addition to this, the series of cavity vanes provides a better guidance to the slot recirculating flow before it mixes with the impeller main inlet flow. Better guidance of the flow improves the mixing at the inducer inlet in the circumferential direction. As a consequence, the stability of the compressor is improved at lower flow rates and a wider map can be achieved. The impact of two cavity vane designs on the map width and performance of the compressor was highlighted through a detailed analysis of the impeller flow field. The numerical and experimental study revealed that an effective vane design can improve the map width and pressure ratio characteristic without an efficiency penalty compared to the classical bleed slot system without vanes. The comparison study between the cavity vane and noncavity vane configurations presented in this paper showed that the map width was improved by 14.3% due to a significant reduction in surge flow and the peak pressure ratio was improved by 2.25% with the addition of a series of cavity vanes in the annular cavity of the bleed slot system.


Author(s):  
Klaus-Dieter Fröhner ◽  
Ze Li

Stability and instability are very important for the layout of real world processes concerning safety and health esp. when planned by scientists. The long‐term investigation of stability was carried out for the last ten years on the basis of the installation and the evaluation of an ergonomically designed outdoor illumination. In the depicted dynamic situation the lighting design influences directly visual discomfort and human performance and in the end stability and instability. The improvement of the adaptation of luminance and its influence on the visual tasks after the rearrangement are presented and discussed. The effective factors on the visual capability and performance of workers, work efficiency and potential accidents in the night shift, and furthermore the accelerators and barriers for the stability of the project are analysed and discussed.


2013 ◽  
Vol 572 ◽  
pp. 636-639
Author(s):  
Xi Chen ◽  
Gang Wang

This paper deals with the walking stability analysis of a multi-legged crablike robot over slope using normalized energy stability margin (NESM) method in order to develop a common stabilization description method and achieve robust locomotion for the robot over rough terrains. The robot is simplified with its static stability being described by NESM. The mathematical model of static stability margin is built so as to carry out the simulation of walking stability over slope for the crablike robot that walks in double tetrapod gait. As a consequence, the relationship between stability margin and the height of the robots centroid, as well as its inclination relative to the ground is calculated by the stability criterion. The success and performance of the stability criterion proposed is verified through MATLAB simulation and real-world experiments using multi-legged crablike robot.


Sign in / Sign up

Export Citation Format

Share Document