scholarly journals The biology of appetite control: Do resting metabolic rate and fat-free mass drive energy intake?

2015 ◽  
Vol 152 ◽  
pp. 473-478 ◽  
Author(s):  
J.E. Blundell ◽  
G. Finlayson ◽  
C. Gibbons ◽  
P. Caudwell ◽  
M. Hopkins
1993 ◽  
Vol 3 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Janice Thompson ◽  
Melinda M. Manore ◽  
James S. Skinner

The resting metabolic rate (RMR) and thermic effect of a meal (TEM) were determined in 13 low-energy intake (LOW) and 11 adequate-energy intake (ADQ) male endurance athletes. The LOW athletes reported eating 1,490 kcal·day-1less than the ADQ group, while the activity level of both groups was similar. Despite these differences, both groups had a similar fat-free mass (FFM) and had been weight stable for at least 2 years. The RMR was significantly lower (p<0.05) in the LOW group compared to the values of the ADQ group (1.19 vs. 1.29 kcal·FFM-1·hr-l, respectively); this difference represents a lower resting expenditure of 158 kcal·day-1. No differences were found in TEM between the two groups. These results suggest that a lower RMR is one mechanism that contributes to weight maintenance in a group of low- versus adequate-energy intake male athletes.


1999 ◽  
Vol 9 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Kathryn H. Myburgh ◽  
Claire Berman ◽  
Illana Novick ◽  
Timothy D. Noakes ◽  
Estelle V. Lambert

We studied 21 ballet dancers aged 19.4 ± 1.4 years, hypothesizing that undernu-trition was a major factor in menstrual irregularity in this population. Menstrual history was determined by questionnaire. Eight dancers had always been regular (R). Thirteen subjects had a history of menstrual irregularity (HI). Of these, 2 were currently regularly menstruating, 3 had short cycles, 6 were oligomenorrheic, and 2 were amenorrheic. Subjects completed a weighed dietary record and an Eating Attitudes Test (EAT). The following physiological parameters were measured: body composition by anthropometry, resting metabolic rate (RMR) by open-circuit indirect calorimetry, and serum thyroid hormone concentrations by radioimmunoassay. R subjects had significantly higher RMR than HI subjects. Also, HI subjects had lower RMR than predicted by fat-free mass, compared to the R subjects. Neitherreported energy intake nor serum thyroid hormone concentrations were different between R and HI subjects. EAT scores varied and were not different between groups. We concluded that in ballet dancers, low RMR is more strongly associated with menstrual irregularity than is currentreported energy intake or serum thyroid hormone concentrations.


2016 ◽  
Vol 130 (18) ◽  
pp. 1615-1628 ◽  
Author(s):  
Mark Hopkins ◽  
John E. Blundell

Energy balance is not a simple algebraic sum of energy expenditure and energy intake as often depicted in communications. Energy balance is a dynamic process and there exist reciprocal effects between food intake and energy expenditure. An important distinction is that of metabolic and behavioural components of energy expenditure. These components not only contribute to the energy budget directly, but also by influencing the energy intake side of the equation. It has recently been demonstrated that resting metabolic rate (RMR) is a potential driver of energy intake, and evidence is accumulating on the influence of physical activity (behavioural energy expenditure) on mechanisms of satiety and appetite control. These effects are associated with changes in leptin and insulin sensitivity, and in the plasma levels of gastrointestinal (GI) peptides such as glucagon-like peptide-1 (GLP-1), ghrelin and cholecystokinin (CCK). The influence of fat-free mass on energy expenditure and as a driver of energy intake directs attention to molecules emanating from skeletal tissue as potential appetite signals. Sedentariness (physical inactivity) is positively associated with adiposity and is proposed to be a source of overconsumption and appetite dysregulation. The molecular signals underlying these effects are not known but represent a target for research.


Author(s):  
Christopher L. Pankey ◽  
Kyle Flack ◽  
Kelsey Ufholz ◽  
LuAnn Johnson ◽  
James N. Roemmich

Abstract Purpose Models of appetite control have been largely based on negative feedback from gut and adipose signaling to central appetite centers. However, contemporary models posit that fat-free mass (FFM) or the energy demand of FFM [i.e., resting metabolic rate (RMR)] may play a primary role in the motivational drive for food intake (i.e., food reinforcement). The relative reinforcing value of food (RRVfood) is associated with energy intake (EI) and increases with an acute energy deficit. Chronic exercise-induced energy deficits lead to alterations in fat mass (FM), FFM, and RMR and provide an opportunity to test whether change in (∆) FM, ∆FFM, ∆usual EI, or ∆RMR are associated with ∆RRVfood. Methods Participants (n = 29, BMI = 25–35 kg/m2) engaged in aerobic exercise expending 300 or 600 kcal, 5 days/weeks for 12 weeks. The reinforcing value of food (PMaxfood) was measured via a computer-based operant responding task and RRVfood was calculated as the reinforcing value of food relative to non-eating sedentary behaviors. RMR was determined by indirect calorimetry and body composition by DXA. Results Post-training FFM correlated with usual post-training EI (rs = 0.41, p < 0.05), PMaxfood (rs=0.52, p < 0.01), and RMR (rs = 0.85, p < 0.0001). ∆RMR negatively correlated with ∆PMaxfood (rs = − 0.38, p < 0.05) and with ∆RRVfood (rs = − 0.37, p < 0.05). ∆PMaxfood and ∆RRVfood were not associated with ∆FFM (p = 0.71, p = 0.57, respectively). Conclusions Reductions in RMR with weight loss may increase food reinforcement as means of restoring FFM and RMR to pre-weight loss amounts. Limiting reductions in RMR during weight loss may benefit weight maintenance by restricting increases in food reinforcement after weight loss.


1991 ◽  
Vol 69 (3) ◽  
pp. 320-326 ◽  
Author(s):  
Eric T. Poehlman ◽  
Helen F. Viers ◽  
Mark Detzer

An understanding of the physiological and behavioral determinants of resting energy requirements is important to nutritional considerations in females. We examined the influence of endurance training and self-reported dietary restraint on resting metabolic rate and fasting plasma hormones in 44 nonobese females characterized for body composition, maximal aerobic power [Formula: see text], and daily energy intake. To examine the association of metabolic rate and dietary restraint with hormonal status, fasting plasma levels of insulin, glucose, and thyroid hormones (total and free fractions of thyroxine and triiodothyronine) were determined. In univariate analysis, resting metabolic rate (kcal∙min−1) was positively related to [Formula: see text] (L∙min−1) (r = 0.54; p < 0.01). This relationship, however, was partially dependent on body size, since fat-free mass was also related to resting metabolic rate (r = 0.42; p < 0.01) and [Formula: see text] (L∙min−1) (r = 0.75; p < 0.01). After controlling for fat-free weight using partial correlation analysis, the relation between RMR and [Formula: see text] was weaker but still significant (partial r = 0.38; p < 0.05). On the other hand, high levels of dietary restraint were associated with higher levels of body fat (r = 0.31; p < 0.05) and a lower resting metabolic rate (r = −0.29; p = 0.07). These associations persisted after control for differences in fat-free mass. Total energy intake as well as total and free levels of triiodothyronine were not related to resting metabolic rate or level of dietary restraint. Our results suggest that the level of endurance training (i.e., [Formula: see text]) and dietary restraint, independent of differences in fat-free mass, contribute to individual variation in resting metabolic rate of nonobese females. These findings appear to be unrelated to fasting plasma concentrations of thyroid hormones. Whereas high levels of endurance training are associated with increased energy requirements at rest, higher levels of dietary restraint are associated with a lower resting metabolic rate and possibly a propensity to gain body fat.Key words: endurance training, dietary restraint, resting metabolic rate, females, energy intake.


2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


2020 ◽  
Author(s):  
Seyedeh Forough Sajjadi ◽  
Atieh Mirzababaei ◽  
nasim Ghodoosi ◽  
Sara Pooyan ◽  
Hana Arghavani ◽  
...  

Abstract Objective Resting metabolic rate (RMR) accounts for most of the daily energy expenditure. The low-carb diet attenuates decreases in RMR. This study aims to investigate the relationship between a low-carb diet and resting metabolic rate status. Methods We enrolled 304 overweight and obese women in this cross-sectional study. BMI, fat mass, fat-free mass, visceral fat, insulin level were assessed. RMR was measured using indirect calorimetry. A low carbohydrate diet score was measured using a validated semi-quantitative food frequency questionnaire (FFQ). Results Our results showed no relationship between LCDS and DNR even after adjust for confounders (Inc. RMR: OR: 0.97; 95% CI: 0.92–1.01, P = 0.20; Dec. RMR: OR: 0.97; 95% CI: 0.94-1.00, P = 0.14). Some components of LCDS had significant differences with DNR, such as carbohydrate and Dec. RMR in adjusted model (OR: 1.62; 95% CI: 0.98–1.37, P = 0.08), MUFA and Dec. RMR in adjusted model (OR: 0.48; 95% CI: 0.21–1.10, P = 0.08) and refined grain and Inc. RMR in crude model (OR: 0.87; 95% CI: 0.77–0.99, P = 0.04). Conclusion Our study showed that there is no association between a low-carb diet and RMR status but carbohydrate, MUFA, and refined grain had a significant relationship.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3394
Author(s):  
Sarah A. Purcell ◽  
Ryan J. Marker ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson

Many breast cancer survivors (BCS) gain fat mass and lose fat-free mass during treatment (chemotherapy, radiation, surgery) and estrogen suppression therapy, which increases the risk of developing comorbidities. Whether these body composition alterations are a result of changes in dietary intake, energy expenditure, or both is unclear. Thus, we reviewed studies that have measured components of energy balance in BCS who have completed treatment. Longitudinal studies suggest that BCS reduce self-reported energy intake and increase fruit and vegetable consumption. Although some evidence suggests that resting metabolic rate is higher in BCS than in age-matched controls, no study has measured total daily energy expenditure (TDEE) in this population. Whether physical activity levels are altered in BCS is unclear, but evidence suggests that light-intensity physical activity is lower in BCS compared to age-matched controls. We also discuss the mechanisms through which estrogen suppression may impact energy balance and develop a theoretical framework of dietary intake and TDEE interactions in BCS. Preclinical and human experimental studies indicate that estrogen suppression likely elicits increased energy intake and decreased TDEE, although this has not been systematically investigated in BCS specifically. Estrogen suppression may modulate energy balance via alterations in appetite, fat-free mass, resting metabolic rate, and physical activity. There are several potential areas for future mechanistic energetic research in BCS (e.g., characterizing predictors of intervention response, appetite, dynamic changes in energy balance, and differences in cancer sub-types) that would ultimately support the development of more targeted and personalized behavioral interventions.


Sign in / Sign up

Export Citation Format

Share Document