scholarly journals Modelling the associations between fat-free mass, resting metabolic rate and energy intake in the context of total energy balance

2015 ◽  
Vol 40 (2) ◽  
pp. 312-318 ◽  
Author(s):  
M Hopkins ◽  
G Finlayson ◽  
C Duarte ◽  
S Whybrow ◽  
P Ritz ◽  
...  
2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3394
Author(s):  
Sarah A. Purcell ◽  
Ryan J. Marker ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson

Many breast cancer survivors (BCS) gain fat mass and lose fat-free mass during treatment (chemotherapy, radiation, surgery) and estrogen suppression therapy, which increases the risk of developing comorbidities. Whether these body composition alterations are a result of changes in dietary intake, energy expenditure, or both is unclear. Thus, we reviewed studies that have measured components of energy balance in BCS who have completed treatment. Longitudinal studies suggest that BCS reduce self-reported energy intake and increase fruit and vegetable consumption. Although some evidence suggests that resting metabolic rate is higher in BCS than in age-matched controls, no study has measured total daily energy expenditure (TDEE) in this population. Whether physical activity levels are altered in BCS is unclear, but evidence suggests that light-intensity physical activity is lower in BCS compared to age-matched controls. We also discuss the mechanisms through which estrogen suppression may impact energy balance and develop a theoretical framework of dietary intake and TDEE interactions in BCS. Preclinical and human experimental studies indicate that estrogen suppression likely elicits increased energy intake and decreased TDEE, although this has not been systematically investigated in BCS specifically. Estrogen suppression may modulate energy balance via alterations in appetite, fat-free mass, resting metabolic rate, and physical activity. There are several potential areas for future mechanistic energetic research in BCS (e.g., characterizing predictors of intervention response, appetite, dynamic changes in energy balance, and differences in cancer sub-types) that would ultimately support the development of more targeted and personalized behavioral interventions.


1993 ◽  
Vol 3 (2) ◽  
pp. 194-206 ◽  
Author(s):  
Janice Thompson ◽  
Melinda M. Manore ◽  
James S. Skinner

The resting metabolic rate (RMR) and thermic effect of a meal (TEM) were determined in 13 low-energy intake (LOW) and 11 adequate-energy intake (ADQ) male endurance athletes. The LOW athletes reported eating 1,490 kcal·day-1less than the ADQ group, while the activity level of both groups was similar. Despite these differences, both groups had a similar fat-free mass (FFM) and had been weight stable for at least 2 years. The RMR was significantly lower (p<0.05) in the LOW group compared to the values of the ADQ group (1.19 vs. 1.29 kcal·FFM-1·hr-l, respectively); this difference represents a lower resting expenditure of 158 kcal·day-1. No differences were found in TEM between the two groups. These results suggest that a lower RMR is one mechanism that contributes to weight maintenance in a group of low- versus adequate-energy intake male athletes.


2013 ◽  
Vol 63 (1) ◽  
pp. 107-117 ◽  
Author(s):  
Wan-long Zhu ◽  
Hao Zhang ◽  
Lihua Meng ◽  
Zheng-kun Wang

Many small mammals respond to seasonal changes in photoperiod by altering body mass and adiposity. These animals may provide valuable models for understanding the regulation of energy balance. In the present study, we examined the effect on body mass, resting metabolic rate, food intake and body composition in cold-acclimated Apodemus draco by transferring them from a short to long day photoperiod. During the first 4 weeks of exposure to short days, A. draco’s body mass decreased. After the next 4 weeks of exposure to long days, body mass increased in the long day group compared to the short day group. This increase in body mass reflected significant increases in absolute amounts of body components, including wet carcass mass, dry carcass mass and body fat mass. Liver, kidney, and small intestine were enlarged due to longer photoperiod during cold exposure. A. draco increased its resting metabolic rate and energy intake after exposure to long days. Serum leptin levels were positively correlated with body mass, body fat mass, resting metabolic rate as well as energy intake. All of the results indicate that A. draco may provide an attractive novel animal model for investigation of the regulation of body mass and energy balance at the organismal levels. Leptin is potentially involved in the photoperiod-induced body mass regulation and thermogenesis of A. draco during cold exposure.


2018 ◽  
Vol 165 (5) ◽  
pp. 325-329 ◽  
Author(s):  
Patrick Mullie ◽  
P Clarys ◽  
W De Bry ◽  
P Geeraerts

IntroductionThe Special Forces (SF) are an elite military group usually engaged in physically demanding field operations, resulting among others in high daily energy requirements. Optimising energy supply and nutritional requirements is therefore mandatory for success. The aim of this study was to estimate energy availability and nutrition during a Qualification Course (Q-Course) for Belgian SF.Methods21 participants recorded all foods and beverages consumed during four days in a structured food diary. Energy expenditure was measured with an accelerometer and fat mass measured with quadripolar impedance. Energy availability was calculated by the following formula: (energy intake by foods and beverages − energy expenditure for physical activity)/kg FFM/day (FFM, fat-free mass).ResultsThe mean (SD) total energy expenditure was 4926 kcal/day (238), with a minimum of 4645 kcal/day and a maximum of 5472 kcal/day. The mean (SD) total energy consumption was 4186 kcal/day (842), giving an energy balance ranging from −2005 kcal/day to 1113 kcal/day. The mean (SD) energy availability was 17 kcal/kg FFM/day, with a minimum of 1 kcal/kg FFM/day and a maximum of 44 kcal/kg FFM/day. The mean (SD) intake of carbohydrates was 6.8 g/kg body weight/day (1.5).ConclusionsDuring this studied Q-Course, energy intake was not optimal as demonstrated by an overall negative energy balance and low energy availability. High interindividual variations in energy intake were found, highlighting the importance of providing SF members nutritional education.


1999 ◽  
Vol 9 (3) ◽  
pp. 285-294 ◽  
Author(s):  
Kathryn H. Myburgh ◽  
Claire Berman ◽  
Illana Novick ◽  
Timothy D. Noakes ◽  
Estelle V. Lambert

We studied 21 ballet dancers aged 19.4 ± 1.4 years, hypothesizing that undernu-trition was a major factor in menstrual irregularity in this population. Menstrual history was determined by questionnaire. Eight dancers had always been regular (R). Thirteen subjects had a history of menstrual irregularity (HI). Of these, 2 were currently regularly menstruating, 3 had short cycles, 6 were oligomenorrheic, and 2 were amenorrheic. Subjects completed a weighed dietary record and an Eating Attitudes Test (EAT). The following physiological parameters were measured: body composition by anthropometry, resting metabolic rate (RMR) by open-circuit indirect calorimetry, and serum thyroid hormone concentrations by radioimmunoassay. R subjects had significantly higher RMR than HI subjects. Also, HI subjects had lower RMR than predicted by fat-free mass, compared to the R subjects. Neitherreported energy intake nor serum thyroid hormone concentrations were different between R and HI subjects. EAT scores varied and were not different between groups. We concluded that in ballet dancers, low RMR is more strongly associated with menstrual irregularity than is currentreported energy intake or serum thyroid hormone concentrations.


2015 ◽  
Vol 152 ◽  
pp. 473-478 ◽  
Author(s):  
J.E. Blundell ◽  
G. Finlayson ◽  
C. Gibbons ◽  
P. Caudwell ◽  
M. Hopkins

2014 ◽  
Vol 64 (1) ◽  
pp. 1-17 ◽  
Author(s):  
Lin Zhang ◽  
Wanlong Zhu ◽  
Fang Yang ◽  
Zhengkun Wang

Environmental factors play an important role in the regulation of a mammal’s physiology and behavior. Consequently, particular species may provide valuable models for understanding the regulation of energy balance. In the present study, tree shrews (Tupaia belangeri) were transferred from a short to a long day photoperiod in cold conditions, in order to test our prediction that short photoperiod may stimulate an increase in thermogenic capacity and energy intake in tree shrews. During the first four weeks of acclimation to short days, T. belangeri increased body mass, whereas during the second four weeks of acclimation to long days, the body mass of tree shrews decreased compared with the short day group. The increase in body mass reflected a significant increase in absolute amounts of body components, such as carcass mass. During long photoperiod associated with cold exposure, livers, kidney, and small intestine mass decreased. T. belangeri decreased resting metabolic rate and energy intake after exposure to long days while during the exposure to short days the shrews started to maintain a stable level after 28 days. Serum leptin levels were positively correlated with body mass, as well as resting metabolic rate and energy intake. The results show that T. belangeri may provide an attractive novel model system for investigation of the regulation of body mass and energy balance at individual levels. Leptin is potentially stimulated by the photoperiod and cold exposure and is responsible for body mass regulation and thermogenesis in T. belangeri.


2016 ◽  
Vol 130 (18) ◽  
pp. 1615-1628 ◽  
Author(s):  
Mark Hopkins ◽  
John E. Blundell

Energy balance is not a simple algebraic sum of energy expenditure and energy intake as often depicted in communications. Energy balance is a dynamic process and there exist reciprocal effects between food intake and energy expenditure. An important distinction is that of metabolic and behavioural components of energy expenditure. These components not only contribute to the energy budget directly, but also by influencing the energy intake side of the equation. It has recently been demonstrated that resting metabolic rate (RMR) is a potential driver of energy intake, and evidence is accumulating on the influence of physical activity (behavioural energy expenditure) on mechanisms of satiety and appetite control. These effects are associated with changes in leptin and insulin sensitivity, and in the plasma levels of gastrointestinal (GI) peptides such as glucagon-like peptide-1 (GLP-1), ghrelin and cholecystokinin (CCK). The influence of fat-free mass on energy expenditure and as a driver of energy intake directs attention to molecules emanating from skeletal tissue as potential appetite signals. Sedentariness (physical inactivity) is positively associated with adiposity and is proposed to be a source of overconsumption and appetite dysregulation. The molecular signals underlying these effects are not known but represent a target for research.


Sign in / Sign up

Export Citation Format

Share Document