scholarly journals Energy balance, body composition, sedentariness and appetite regulation: pathways to obesity

2016 ◽  
Vol 130 (18) ◽  
pp. 1615-1628 ◽  
Author(s):  
Mark Hopkins ◽  
John E. Blundell

Energy balance is not a simple algebraic sum of energy expenditure and energy intake as often depicted in communications. Energy balance is a dynamic process and there exist reciprocal effects between food intake and energy expenditure. An important distinction is that of metabolic and behavioural components of energy expenditure. These components not only contribute to the energy budget directly, but also by influencing the energy intake side of the equation. It has recently been demonstrated that resting metabolic rate (RMR) is a potential driver of energy intake, and evidence is accumulating on the influence of physical activity (behavioural energy expenditure) on mechanisms of satiety and appetite control. These effects are associated with changes in leptin and insulin sensitivity, and in the plasma levels of gastrointestinal (GI) peptides such as glucagon-like peptide-1 (GLP-1), ghrelin and cholecystokinin (CCK). The influence of fat-free mass on energy expenditure and as a driver of energy intake directs attention to molecules emanating from skeletal tissue as potential appetite signals. Sedentariness (physical inactivity) is positively associated with adiposity and is proposed to be a source of overconsumption and appetite dysregulation. The molecular signals underlying these effects are not known but represent a target for research.

2012 ◽  
Vol 37 (5) ◽  
pp. 893-899 ◽  
Author(s):  
David P. Bradley ◽  
Roger Kulstad ◽  
Natalie Racine ◽  
Yoram Shenker ◽  
Melissa Meredith ◽  
...  

Exenatide is a medication similar in structure and effect to native glucagon-like peptide-1, an incretin hormone with glucose-lowering properties. The aim of the study was to measure the change in total energy expenditure (TEE) and body composition during exenatide administration and by deduction the relative contributions of energy expenditure and energy intake to exenatide-induced weight loss. Forty-five obese (body mass index, 30–40 kg·m–2) subjects were identified. After exclusion criteria application, 28 subjects entered into the study and 18 subjects (12 female, 6 male) completed the study, which consisted of 6 visits over 14 weeks and injection of exenatide for an average of 84 ± 5 days. Respiratory gas analysis and doubly labeled water measurements were performed before initiation of exenatide and after approximately 3 months of exenatide administration. The average weight loss from the beginning of injection period to the end of the study in completed subjects was 2.0 ± 2.8 kg (p = 0.01). Fat mass declined by 1.3 ± 1.8 kg (p = 0.01) while the fat-free mass trended downward but was not significant (0.8 ± 2.2 kg, p = 0.14). There was no change in weight-adjusted TEE (p = 0.20), resting metabolic rate (p = 0.51), or physical activity energy expenditure (p = 0.38) and no change in the unadjusted thermic effect of a meal (p = 0.37). The significant weight loss because of exenatide administration was thus the result of decreasing energy intake. In obese nondiabetic subjects, exenatide administration did not increase TEE and by deduction the significant weight loss and loss of fat mass was due to decreased energy intake.


2021 ◽  
Author(s):  
Patrick Mullie ◽  
Pieter Maes ◽  
Laurens van Veelen ◽  
Damien Van Tiggelen ◽  
Peter Clarys

ABSTRACT Introduction Adequate energy supply is a prerequisite for optimal performances and recovery. The aims of the present study were to estimate energy balance and energy availability during a selection course for Belgian paratroopers. Methods Energy expenditure by physical activity was measured with accelerometer (ActiGraph GT3X+, ActiGraph LLC, Pensacola, FL, USA) and rest metabolic rate in Cal.d−1 with Tinsley et al.’s equation based on fat-free mass = 25.9 × fat-free mass in kg + 284. Participants had only access to the French individual combat rations of 3,600 Cal.d−1, and body fat mass was measured with quadripolar impedance (Omron BF508, Omron, Osaka, Japan). Energy availability was calculated by the formula: ([energy intake in foods and beverages] − [energy expenditure physical activity])/kg FFM−1.d−1, with FFM = fat-free mass. Results Mean (SD) age of the 35 participants was 25.1 (4.18) years, and mean (SD) percentage fat mass was 12.0% (3.82). Mean (SD) total energy expenditure, i.e., the sum of rest metabolic rate, dietary-induced thermogenesis, and physical activity, was 5,262 Cal.d−1 (621.2), with percentile 25 at 4,791 Cal.d−1 and percentile 75 at 5,647 Cal.d−1, a difference of 856 Cal.d−1. Mean daily energy intake was 3,600 Cal.d−1, giving a negative energy balance of 1,662 (621.2) Cal.d−1. Mean energy availability was 9.3 Cal.kg FFM−1.d−1. Eleven of the 35 participants performed with a negative energy balance of 2,000 Cal.d−1, and only five participants out of 35 participants performed at a less than 1,000 Cal.d−1 negative energy balance level. Conclusions Energy intake is not optimal as indicated by the negative energy balance and the low energy availability, which means that the participants to this selection course had to perform in suboptimal conditions.


Nutrients ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 3394
Author(s):  
Sarah A. Purcell ◽  
Ryan J. Marker ◽  
Marc-Andre Cornier ◽  
Edward L. Melanson

Many breast cancer survivors (BCS) gain fat mass and lose fat-free mass during treatment (chemotherapy, radiation, surgery) and estrogen suppression therapy, which increases the risk of developing comorbidities. Whether these body composition alterations are a result of changes in dietary intake, energy expenditure, or both is unclear. Thus, we reviewed studies that have measured components of energy balance in BCS who have completed treatment. Longitudinal studies suggest that BCS reduce self-reported energy intake and increase fruit and vegetable consumption. Although some evidence suggests that resting metabolic rate is higher in BCS than in age-matched controls, no study has measured total daily energy expenditure (TDEE) in this population. Whether physical activity levels are altered in BCS is unclear, but evidence suggests that light-intensity physical activity is lower in BCS compared to age-matched controls. We also discuss the mechanisms through which estrogen suppression may impact energy balance and develop a theoretical framework of dietary intake and TDEE interactions in BCS. Preclinical and human experimental studies indicate that estrogen suppression likely elicits increased energy intake and decreased TDEE, although this has not been systematically investigated in BCS specifically. Estrogen suppression may modulate energy balance via alterations in appetite, fat-free mass, resting metabolic rate, and physical activity. There are several potential areas for future mechanistic energetic research in BCS (e.g., characterizing predictors of intervention response, appetite, dynamic changes in energy balance, and differences in cancer sub-types) that would ultimately support the development of more targeted and personalized behavioral interventions.


1995 ◽  
Vol 73 (3) ◽  
pp. 337-347 ◽  
Author(s):  
Klaas R. Westerterp ◽  
Jeroen H. H. L. M. Donkers ◽  
Elisabeth W. H. M. Fredrix ◽  
Piet oekhoudt

In adults, body mass (BM) and its components fat-free mass (FFM) and fat mass (FM) are normally regulated at a constant level. Changes in FM and FFM are dependent on energy intake (EI) and energy expenditure (EE). The body defends itself against an imbalance between EI and EE by adjusting, within limits, the one to the other. When, at a given EI or EE, energy balance cannot be reached, FM and FFM will change, eventually resulting in an energy balance at a new value. A model is described which simulates changes in FM and FFM using EI and physical activity (PA) as input variables. EI can be set at a chosen value or calculated from dietary intake with a database on the net energy of foods. PA can be set at a chosen multiple of basal metabolic rate (BMR) or calculated from the activity budget with a database on the energy cost of activities in multiples of BMR. BMR is calculated from FFM and FM and, if necessary, FFM is calculated from BM, height, sex and age, using empirical equations. The model uses existing knowledge on the adaptation of energy expenditure (EE) to an imbalance between EI and EE, and to resulting changes in FM and FFM. Mobilization and storage of energy as FM and FFM are functions of the relative size of the deficit (EI/EE) and of the body composition. The model was validated with three recent studies measuring EE at a fixed EI during an interval with energy restriction, overfeeding and exercise training respectively. Discrepancies between observed and simulated changes in energy stores were within the measurement precision of EI, EE and body composition. Thus the consequences of a change in dietary intake or a change in physical activity on body weight and body composition can be simulated.


2018 ◽  
Vol 165 (5) ◽  
pp. 325-329 ◽  
Author(s):  
Patrick Mullie ◽  
P Clarys ◽  
W De Bry ◽  
P Geeraerts

IntroductionThe Special Forces (SF) are an elite military group usually engaged in physically demanding field operations, resulting among others in high daily energy requirements. Optimising energy supply and nutritional requirements is therefore mandatory for success. The aim of this study was to estimate energy availability and nutrition during a Qualification Course (Q-Course) for Belgian SF.Methods21 participants recorded all foods and beverages consumed during four days in a structured food diary. Energy expenditure was measured with an accelerometer and fat mass measured with quadripolar impedance. Energy availability was calculated by the following formula: (energy intake by foods and beverages − energy expenditure for physical activity)/kg FFM/day (FFM, fat-free mass).ResultsThe mean (SD) total energy expenditure was 4926 kcal/day (238), with a minimum of 4645 kcal/day and a maximum of 5472 kcal/day. The mean (SD) total energy consumption was 4186 kcal/day (842), giving an energy balance ranging from −2005 kcal/day to 1113 kcal/day. The mean (SD) energy availability was 17 kcal/kg FFM/day, with a minimum of 1 kcal/kg FFM/day and a maximum of 44 kcal/kg FFM/day. The mean (SD) intake of carbohydrates was 6.8 g/kg body weight/day (1.5).ConclusionsDuring this studied Q-Course, energy intake was not optimal as demonstrated by an overall negative energy balance and low energy availability. High interindividual variations in energy intake were found, highlighting the importance of providing SF members nutritional education.


2015 ◽  
Vol 152 ◽  
pp. 473-478 ◽  
Author(s):  
J.E. Blundell ◽  
G. Finlayson ◽  
C. Gibbons ◽  
P. Caudwell ◽  
M. Hopkins

2015 ◽  
Vol 75 (3) ◽  
pp. 319-327 ◽  
Author(s):  
David J. Clayton ◽  
Lewis J. James

The belief that breakfast is the most important meal of day has been derived from cross-sectional studies that have associated breakfast consumption with a lower BMI. This suggests that breakfast omission either leads to an increase in energy intake or a reduction in energy expenditure over the remainder of the day, resulting in a state of positive energy balance. However, observational studies do not imply causality. A number of intervention studies have been conducted, enabling more precise determination of breakfast manipulation on indices of energy balance. This review will examine the results from these studies in adults, attempting to identify causal links between breakfast and energy balance, as well as determining whether consumption of breakfast influences exercise performance. Despite the associations in the literature, intervention studies have generally found a reduction in total daily energy intake when breakfast is omitted from the daily meal pattern. Moreover, whilst consumption of breakfast supresses appetite during the morning, this effect appears to be transient as the first meal consumed after breakfast seems to offset appetite to a similar extent, independent of breakfast. Whether breakfast affects energy expenditure is less clear. Whilst breakfast does not seem to affect basal metabolism, breakfast omission may reduce free-living physical activity and endurance exercise performance throughout the day. In conclusion, the available research suggests breakfast omission may influence energy expenditure more strongly than energy intake. Longer term intervention studies are required to confirm this relationship, and determine the impact of these variables on weight management.


Author(s):  
Ilanit Bomer ◽  
Carola Saure ◽  
Carolina Caminiti ◽  
Javier Gonzales Ramos ◽  
Graciela Zuccaro ◽  
...  

AbstractCraniopharyngioma is a histologically benign brain malformation with a fundamental role in satiety modulation, causing obesity in up to 52% of patients.To evaluate cardiovascular risk factors, body composition, resting energy expenditure (REE), and energy intake in craniopharyngioma patients and to compare the data with those from children with multifactorial obesity.All obese children and adolescents who underwent craniopharyngioma resection and a control group of children with multifactorial obesity in follow-up between May 2012 and April 2013.Anthropometric measurements, bioelectrical impedance, indirect calorimetry, energy intake, homeostatic model assessment insulin resistance (HOMA-IR), and dyslipidemia were evaluated.Twenty-three patients with craniopharyngioma and 43 controls were included. Children with craniopharyngioma-related obesity had a lower fat-free mass percentage (62.4 vs. 67.5; p=0.01) and a higher fat mass percentage (37.5 vs. 32.5; p=0.01) compared to those with multifactorial obesity. A positive association was found between %REE and %fat-free mass in subjects with multifactorial obesity (68±1% in normal REE vs. 62.6±1% in low REE; p=0.04), but not in craniopharyngioma patients (62±2.7 in normal REE vs. 61.2±1.8% in low REE; p=0.8). No differences were found in metabolic involvement or energy intake.REE was lower in craniopharyngioma patients compared to children with multifactorial obesity regardless of the amount of fat-free mass, suggesting that other factors may be responsible for the lower REE.


2004 ◽  
Vol 96 (4) ◽  
pp. 1357-1364 ◽  
Author(s):  
Louise C. Mâsse ◽  
Janet E. Fulton ◽  
Kathleen L. Watson ◽  
Matthew T. Mahar ◽  
Michael C. Meyers ◽  
...  

This study investigated the influence of two approaches (mathematical transformation and statistical procedures), used to account for body composition [body mass or fat-free mass (FFM)], on associations between two measures of physical activity and energy expenditure determined by doubly labeled water (DLW). Complete data for these analyses were available for 136 African American (44.1%) and Hispanic (55.9%) women (mean age 50 ± 7.3 yr). Total energy expenditure (TEE) by DLW was measured over 14 days. Physical activity energy expenditure (PAEE) was computed as 0.90 × TEE - resting metabolic rate. During week 2, participants wore an accelerometer for 7 consecutive days and completed a 7-day diary. Pearson's product-moment correlations and three statistical procedures (multiple regressions, partial correlations, and allometric scaling) were used to assess the effect of body composition on associations. The methods-comparison analysis was used to study the effect of body composition on agreement. The statistical procedures demonstrated that associations improved when body composition was included in the model. The accelerometer explained a small but meaningful portion of the variance in TEE and PAEE after body mass was accounted for. The methods-comparison analysis confirmed that agreement with DLW was affected by the transformation. Agreement between the diary (transformed with body mass) and TEE reflected the association that exists between body mass and TEE. These results suggest that the accelerometer and diary accounted for a small portion of TEE and PAEE. Most of the variance in DLW-measured energy expenditure was explained by body mass or FFM.


Sign in / Sign up

Export Citation Format

Share Document