Differential effects of high-fat diet on glucose tolerance, food intake, and glucocorticoid regulation in male C57BL/6J and BALB/cJ mice

2020 ◽  
Vol 215 ◽  
pp. 112773 ◽  
Author(s):  
Harish S. Appiakannan ◽  
Melissa L. Rasimowicz ◽  
Christopher B. Harrison ◽  
E. Todd Weber
2020 ◽  
Vol 4 (Supplement_2) ◽  
pp. 1844-1844
Author(s):  
Daniel Torres ◽  
Matthew Pitts ◽  
Lucia Seale ◽  
Ann Hashimoto ◽  
Katlyn An ◽  
...  

Abstract Objectives The trace element selenium (Se) is known mainly for its antioxidant properties and is critical for proper brain function. The role of Se in regulating energy metabolism, and the sexually dimorphic nature of Se functions, however, are underappreciated, and warrant increased attention. Recent work in our lab has highlighted the importance of Se utilization in hypothalamic regulation of energy metabolism. Dietary Se is incorporated into selenoproteins in the form of the unique amino acid selenocysteine (Sec). The objective of this study was to assess the role of selenoproteins in Agouti-related peptide (Agrp)-positive neurons, an orexigenic sub-population of the hypothalamus. Methods We generated mice with Agrp-Cre-driven deletion of selenocysteine tRNA (Trsp-Agrp KO mice), which is essential for Sec incorporation into selenoproteins, thus ablating selenoprotein synthesis in Agrp-positive neurons. The metabolic phenotype of Trsp-Agrp KO mice challenged with a high-fat diet was characterized via glucose tolerance test (i.p. injection) and the use of analytical chambers to measure food intake and respiratory metabolism. Prior to sacrifice, mice were challenged with leptin (i.p. injection) to assess neuronal leptin responsivity via immunohistochemistry and western blot. Brown adipose tissue (BAT) morphology and thermogenic protein expression were also analyzed. Results Female Trsp-Agrp KO mice displayed resistance to diet-induced obesity, which was accompanied by improved glucose tolerance and elevated energy expenditure levels without changes in food intake. Female Trsp-Agrp KO mice also had greater leptin sensitivity and showed signs of elevated BAT thermogenesis. Male Trsp-Agrp KO mice displayed no changes in metabolic phenotype. Conclusions Loss of selenoproteins in Agrp-positive neurons of the hypothalamus promotes energy expenditure and reduces diet-induced obesity in a sexually dimorphic manner, leading to resistance to a high-fat diet in females. Funding Sources This work was funded by grant support from the National Institute of Diabetes and Digestive and Kidney Diseases (MJB) and Ola HAWAII, a grant from the National Institute on Minority Health and Health Disparities.


2011 ◽  
Vol 2011 ◽  
pp. 1-8 ◽  
Author(s):  
Amanda Foskett ◽  
Mawadda Alnaeeli ◽  
Li Wang ◽  
Ruifeng Teng ◽  
Constance T. Noguchi

Erythropoietin (Epo) is a pleotropic cytokine with several nonhematopoietic tissue effects. High-dose Epo treatment-mediated effects on body weight, fat mass and glucose tolerance have recently been reported, thus extending its pleotropic effects to fat and glucose metabolism. However, the exact dose range of Epo treatment required for such effects remains unidentified to date. We investigated Epo dosage effect (up to 1000 U/kg) on hematocrit, body weight, body composition, glucose metabolism, food intake, and physical activity, during high-fat diet-induced obesity. We report that Epo doses (1000, 600, 300, and 150 U/kg) significantly reduced body weight gain and fat mass, while, only Epo doses of 300 U/kg and higher significantly affected glucose tolerance. None of the tested Epo doses showed any detectable effects on food intake, and only 1000 U/kg dose significantly increased physical activity, suggesting that these parameters may only be partially responsible for the metabolic effects of Epo treatment.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Anandini Swaminathan ◽  
Andrej Fokin ◽  
Tomas Venckūnas ◽  
Hans Degens

AbstractMethionine restriction (MR) has been shown to reduce the age-induced inflammation. We examined the effect of MR (0.17% methionine, 10% kCal fat) and MR + high fat diet (HFD) (0.17% methionine, 45% kCal fat) on body mass, food intake, glucose tolerance, resting energy expenditure, hind limb muscle mass, denervation-induced atrophy and overload-induced hypertrophy in young and old mice. In old mice, MR and MR + HFD induced a decrease in body mass. Muscle mass per body mass was lower in old compared to young mice. MR restored some of the HFD-induced reduction in muscle oxidative capacity. The denervation-induced atrophy of the m. gastrocnemius was larger in animals on MR than on a control diet, irrespective of age. Old mice on MR had larger hypertrophy of m. plantaris. Irrespective of age, MR and MR + HFD had better glucose tolerance compared to the other groups. Young and old mice on MR + HFD had a higher resting VO2 per body mass than HFD group. Mice on MR and MR + HFD had a resting respiratory quotient closer to 0.70, irrespective of age, indicating an increased utilization of lipids. In conclusion, MR in combination with resistance training may improve skeletal muscle and metabolic health in old age even in the face of obesity.


Nutrients ◽  
2021 ◽  
Vol 13 (5) ◽  
pp. 1666
Author(s):  
Dean S. Ross ◽  
Tzu-Hsuan Yeh ◽  
Shalinie King ◽  
Julia Mathers ◽  
Mark S. Rybchyn ◽  
...  

Increased risks of skeletal fractures are common in patients with impaired glucose handling and type 2 diabetes mellitus (T2DM). The pathogenesis of skeletal fragility in these patients remains ill-defined as patients present with normal to high bone mineral density. With increasing cases of glucose intolerance and T2DM it is imperative that we develop an accurate rodent model for further investigation. We hypothesized that a high fat diet (60%) administered to developing male C57BL/6J mice that had not reached skeletal maturity would over represent bone microarchitectural implications, and that skeletally mature mice would better represent adult-onset glucose intolerance and the pre-diabetes phenotype. Two groups of developing (8 week) and mature (12 week) male C57BL/6J mice were placed onto either a normal chow (NC) or high fat diet (HFD) for 10 weeks. Oral glucose tolerance tests were performed throughout the study period. Long bones were excised and analysed for ex vivo biomechanical testing, micro-computed tomography, 2D histomorphometry and gene/protein expression analyses. The HFD increased fasting blood glucose and significantly reduced glucose tolerance in both age groups by week 7 of the diets. The HFD reduced biomechanical strength, both cortical and trabecular indices in the developing mice, but only affected cortical outcomes in the mature mice. Similar results were reflected in the 2D histomorphometry. Tibial gene expression revealed decreased bone formation in the HFD mice of both age groups, i.e., decreased osteocalcin expression and increased sclerostin RNA expression. In the mature mice only, while the HFD led to a non-significant reduction in runt-related transcription factor 2 (Runx2) RNA expression, this decrease became significant at the protein level in the femora. Our mature HFD mouse model more accurately represents late-onset impaired glucose tolerance/pre-T2DM cases in humans and can be used to uncover potential insights into reduced bone formation as a mechanism of skeletal fragility in these patients.


2021 ◽  
Vol 22 (10) ◽  
pp. 5390
Author(s):  
Qianhui Zeng ◽  
Nannan Wang ◽  
Yaru Zhang ◽  
Yuxuan Yang ◽  
Shuangshuang Li ◽  
...  

Obesity-induced adipose tissue dysfunction and disorders of glycolipid metabolism have become a worldwide research priority. Zfp217 plays a crucial role in adipogenesis of 3T3-L1 preadipocytes, but about its functions in animal models are not yet clear. To explore the role of Zfp217 in high-fat diet (HFD)-induced obese mice, global Zfp217 heterozygous knockout (Zfp217+/−) mice were constructed. Zfp217+/− mice and Zfp217+/+ mice fed a normal chow diet (NC) did not differ significantly in weight gain, percent body fat mass, glucose tolerance, or insulin sensitivity. When challenged with HFD, Zfp217+/− mice had less weight gain than Zfp217+/+ mice. Histological observations revealed that Zfp217+/− mice fed a high-fat diet had much smaller white adipocytes in inguinal white adipose tissue (iWAT). Zfp217+/− mice had improved metabolic profiles, including improved glucose tolerance, enhanced insulin sensitivity, and increased energy expenditure compared to the Zfp217+/+ mice under HFD. We found that adipogenesis-related genes were increased and metabolic thermogenesis-related genes were decreased in the iWAT of HFD-fed Zfp217+/+ mice compared to Zfp217+/− mice. In addition, adipogenesis was markedly reduced in mouse embryonic fibroblasts (MEFs) from Zfp217-deleted mice. Together, these data indicate that Zfp217 is a regulator of energy metabolism and it is likely to provide novel insight into treatment for obesity.


2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Camila Lubaczeuski ◽  
Luciana Mateus Gonçalves ◽  
Jean Franciesco Vettorazzi ◽  
Mirian Ayumi Kurauti ◽  
Junia Carolina Santos-Silva ◽  
...  

The aim of this study was to investigate the effect of subdiaphragmatic vagotomy on insulin sensitivity, secretion, and degradation in metabolic programmed mice, induced by a low-protein diet early in life, followed by exposure to a high-fat diet in adulthood. Weaned 30-day-old C57Bl/6 mice were submitted to a low-protein diet (6% protein). After 4 weeks, the mice were distributed into three groups: LP group, which continued receiving a low-protein diet; LP + HF group, which started to receive a high-fat diet; and LP + HFvag group, which underwent vagotomy and also was kept at a high-fat diet. Glucose-stimulated insulin secretion (GSIS) in isolated islets, ipGTT, ipITT, in vivo insulin clearance, and liver expression of the insulin-degrading enzyme (IDE) was accessed. Vagotomy improved glucose tolerance and reduced insulin secretion but did not alter adiposity and insulin sensitivity in the LP + HFvag, compared with the LP + HF group. Improvement in glucose tolerance was accompanied by increased insulinemia, probably due to a diminished insulin clearance, as judged by the lower C-peptide : insulin ratio, during the ipGTT. Finally, vagotomy also reduced liver IDE expression in this group. In conclusion, when submitted to vagotomy, the metabolic programmed mice showed improved glucose tolerance, associated with an increase of plasma insulin concentration as a result of insulin clearance reduction, a phenomenon probably due to diminished liver IDE expression.


Hypertension ◽  
2016 ◽  
Vol 68 (suppl_1) ◽  
Author(s):  
Nicola Aberdein ◽  
Jussara M do Carmo ◽  
Zhen Wang ◽  
Taolin Fang ◽  
Cecilia P de Lara ◽  
...  

Obese subjects are often resistant to leptin’s metabolic effects although blood pressure (BP) and sympathetic nervous system responses appear to be preserved. Protein tyrosine phosphatase 1B (PTP1B), a negative regulator of leptin signaling, may play a role in promoting this selective leptin resistance and causing metabolic dysfunction in obesity. Our previous studies suggest that the chronic BP responses to leptin are mediated via activation of pro-opiomelanocortin (POMC) neurons. The goal of this study was to determine if PTP1B in POMC neurons differentially controls metabolic functions and BP in mice fed a high fat diet (HFD). Male mice with POMC specific PTP1B deletion (POMC/PTP1B -/- ) and littermate controls (PTP1B flox/flox ) were fed a HFD from 6 to 22 wks of age. Baseline BP after 16 weeks of a HFD (95±2 vs. 95±3 mmHg) and BP responses to acute stress (Δ32±0 vs. Δ32±6 mmHg), measured by telemetry, were not different in POMC/PTP1B -/- compared to control mice, respectively. Heart rate (HR) was not different in POMC/PTP1B -/- and control mice during acute stress (699±4 vs. 697±15 bpm, respectively). Total body weight (TBW) and fat mass were reduced at 20 weeks of age in POMC/PTP1B -/- compared to controls (36.7±0.1 vs. 42.0±1 g TBW and 12.7±0.4 vs. 16.1±1.0 g fat mass, respectively). Liver weight of POMC/PTP1B -/- mice was less than in controls, and this was evident even when liver weight was normalized as % of TBW (4.5±0.2 vs. 5.0±0.2 %). POMC/PTP1B -/- males had reduced liver lipid accumulation compared to controls as measured by EchoMRI (0.08±0.03 vs. 0.15±0.03 g/g liver weight). Glucose tolerance was also improved by 46% in POMC/PTP1B -/- compared to controls as measured by AUC, 25856±1683 vs. 47267±5616 mg/dLx120min, respectively. These findings indicate that PTP1B signaling in POMC neurons plays a crucial role in regulating liver lipid accumulation and glucose tolerance but does not appear to mediate changes in BP or BP responses to acute stress in mice fed a high HFD (supported by NHLBI-PO1HL51971 and NIGMS P20GM104357)


Hypertension ◽  
2021 ◽  
Vol 78 (Suppl_1) ◽  
Author(s):  
Darren Mehay ◽  
Sarah Bingaman ◽  
Yuval Silberman ◽  
Amy Arnold

Angiotensin (Ang)-(1-7) is a protective hormone of the renin-angiotensin system that improves insulin sensitivity, glucose tolerance, and energy balance in obese rodents. Our recent findings suggest that Ang-(1-7) activates mas receptors (MasR) in the arcuate nucleus of the hypothalamus (ARC), a brain region critical to control of energy balance and glucose homeostasis, to induce these positive metabolic effects. The distribution of MasR in the ARC and their role in metabolic regulation, however, is unknown. We hypothesized: (1) MasR are expressed in the ARC; and (2) deletion of ARC MasR leads to worsened metabolic outcomes following high fat diet (HFD). To test this, male and female C57Bl/6J mice were fed a 60% HFD or matched control diet ad libitum for 12 weeks. RNAscope in situ hybridization was performed on coronal ARC sections in rostral-middle-caudal regions to determine percentage of MasR positive neurons (n=5/group). In a second experiment, we assessed body composition and insulin and glucose tolerance in transgenic mice with deletion of MasR in ARC neurons (MasR-flox with AAV5-hsyn-GFP-Cre). RNAscope revealed a wide distribution on MasR-positive cells throughout the rostral to caudal extent of the ARC. The average percentage of MasR positive neurons was increased in females versus males, with HFD tending to increase MasR expression in both sexes (control diet male: 11±2; control diet female: 17±3; HFD male: 15±5; HFD female: 24±2; p sex : 0.030; p diet : 0.066; p int : 0.615; two-way ANOVA). Deletion of MasR in ARC neurons worsened insulin sensitivity in HFD but not control diet females (area under the curve for change in glucose from baseline: -1989±1359 HFD control virus vs. 2530±1762 HFD Cre virus; p=0.016), while fasting glucose, glucose tolerance, and body composition did not change. There was no effect of ARC MasR deletion on metabolic outcomes in control diet or HFD male mice. These findings suggest females have more MasR positive neurons in the ARC compared to males, which may be a sex-specific protective mechanism for glucose homeostasis. While further studies are needed to explore the role of ARC MasR in metabolic regulation, these findings support targeting Ang-(1-7) as an innovative strategy in obesity.


2017 ◽  
Vol 29 (10) ◽  
pp. e12528 ◽  
Author(s):  
M. van den Top ◽  
F.-Y. Zhao ◽  
R. Viriyapong ◽  
N. J. Michael ◽  
A. C. Munder ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document