Detailed sphingolipid profile responded to salt stress in cotton root and the GhIPCS1 is involved in the regulation of plant salt tolerance

Plant Science ◽  
2021 ◽  
pp. 111174
Author(s):  
Yujie Liu ◽  
Li Wang ◽  
Xing Li ◽  
Ming Luo
2019 ◽  
Vol 60 (8) ◽  
pp. 1829-1841 ◽  
Author(s):  
Guochun Wu ◽  
Sha Li ◽  
Xiaochuan Li ◽  
Yunhong Liu ◽  
Shuangshuang Zhao ◽  
...  

Abstract Alternative oxidase (AOX) has been reported to be involved in mitochondrial function and redox homeostasis, thus playing an essential role in plant growth as well as stress responses. However, its biological functions in nonseed plants have not been well characterized. Here, we report that AOX participates in plant salt tolerance regulation in moss Physcomitrella patens (P. patens). AOX is highly conserved and localizes to mitochondria in P. patens. We observed that PpAOX rescued the impaired cyanide (CN)-resistant alternative (Alt) respiratory pathway in Arabidopsis thaliana (Arabidopsis) aox1a mutant. PpAOX transcription and Alt respiration were induced upon salt stress in P. patens. Using homologous recombination, we generated PpAOX-overexpressing lines (PpAOX OX). PpAOX OX plants exhibited higher Alt respiration and lower total reactive oxygen species accumulation under salt stress condition. Strikingly, we observed that PpAOX OX plants displayed decreased salt tolerance. Overexpression of PpAOX disturbed redox homeostasis in chloroplasts. Meanwhile, chloroplast structure was adversely affected in PpAOX OX plants in contrast to wild-type (WT) P. patens. We found that photosynthetic activity in PpAOX OX plants was also lower compared with that in WT. Together, our work revealed that AOX participates in plant salt tolerance in P. patens and there is a functional link between mitochondria and chloroplast under challenging conditions.


2020 ◽  
Vol 21 (3) ◽  
pp. 1165
Author(s):  
Jiayu Luan ◽  
Jingxiang Dong ◽  
Xin Song ◽  
Jing Jiang ◽  
Huiyu Li

Salt stress inhibits normal plant growth and development by disrupting cellular water absorption and metabolism. Therefore, understanding plant salt tolerance mechanisms should provide a theoretical basis for developing salt-resistant varieties. Here, we cloned ThTrx5 from Tamarix hispida, a salt-resistant woody shrub, and generated ThTrx5-overexpressing transgenic Arabidopsis thaliana lines. Under NaCl stress, the germination rate of overexpressing ThTrx5 lines was significantly increased relative to that of the nontransgenic line; under salt stress, superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), and glutathione levels and root length and fresh weight values of transgenic ThTrx5 plants were significantly greater than corresponding values for wild-type plants. Moreover, with regard to the transcriptome, comparison of differential gene expression of transgenic versus nontransgenic lines at 0 h and 3 h of salt stress exposure revealed 500 and 194 differentially expressed genes (DEGs), respectively, that were mainly functionally linked to catalytic activity and binding process. Pull-down experiments showed that ThTrx bound 2-Cys peroxiredoxin BAS1-like protein that influences stress response-associated redox, hormone signal transduction, and transcription factor functions. Therefore, this work provides important insights into ThTrx5 mechanisms that promote salt tolerance in plants.


2016 ◽  
Vol 43 (7) ◽  
pp. 590 ◽  
Author(s):  
Yang Ping Lee ◽  
Christian Funk ◽  
Alexander Erban ◽  
Joachim Kopka ◽  
Karin I. Köhl ◽  
...  

Salinity strongly impairs plant growth and development. Natural genetic variation can be used to dissect complex traits such as plant salt tolerance. We used 16 accessions of the halophytic species Eutrema salsugineum (previously called Thellungiella salsuginea (Pallas) O.E.Schulz, Thellungiella halophila (C.A.Meyer) O.E. Schulz and Thellungiella botschantzevii D.A.German to investigate their natural variation in salinity tolerance. Although all accessions showed survival and growth up to 700 mM NaCl in hydroponic culture, their relative salt tolerance varied considerably. All accessions accumulated the compatible solutes proline, sucrose, glucose and fructose and the polyamines putrescine and spermine. Relative salt tolerance was not correlated with the content of any of the investigated solutes. We compared the metabolomes and transcriptomes of Arabidopsis thaliana (L. Heynh.) Col-0 and E. salsugineum Yukon under control and salt stress conditions. Higher content of several metabolites in Yukon compared with Col-0 under control conditions indicated metabolic pre-adaptation to salinity in the halophyte. Most metabolic salt responses in Yukon took place at 200 mM NaCl, whereas few additional changes were observed between 200 and 500 mM. The opposite trend was observed for the transcriptome, with only little overlap between salt-regulated genes in the two species. In addition, only about half of the salt-regulated Yukon unigenes had orthologues in Col-0.


2001 ◽  
Vol 28 (10) ◽  
pp. 999 ◽  
Author(s):  
Albino Maggio ◽  
Paul M. Hasegawa ◽  
Ray A. Bressan ◽  
M. Federica Consiglio ◽  
Robert J. Joly

Salinity is a major environmental constraint limiting the yield of crop plants in many semi-arid and arid regions. A recently developed biophysical model for plant growth in saline environments confirms a critical role for root morphology and hydraulic properties in salinity and soil water deficit tolerance. The identification of genes based on correlations between exposure to salt stress and gene expression in roots and other organs has to date proved to be only marginally successful as a strategy for improving plant salt tolerance. Recently, the identification of genes that function in stress tolerance has advanced considerably by using genetic mutation analysis. However, the power of a genetic approach to understanding the specific mechanisms of root adaptation to saline and osmotic stress environments has not been fully exploited. A review of the available, yet still incomplete, collection of root mutants in Arabidopsis and other species demonstrates the potential usefulness of such mutants as tools in the genetic dissection of root function under osmotic stress. Identification of genes responsible for changes in root morphology that might also be advantageous in the presence of salt stress may open new avenues towards the elucidation of critical mechanisms for plant salt tolerance.


2017 ◽  
Vol 4 (4) ◽  
pp. 498-512
Author(s):  
Jayeeta Mitra ◽  
Jay Prakash Awasthi ◽  
Sanjib Kumar Panda

In the present study HvPIP2;4 was overexpressed in Arabidopsis thaliana to engineer enhanced salt tolerance. Barley Aquaporin was selected since barley shows fairly good tolerance to drought, salt stress and low temperature compared to many other crops including rice, and it was thought that analysis of barley aquaporin will provide a good insight into the molecular mechanisms involved in transport of water & their efficacy during abiotic stress condition. Arabidopsis line expressing HvPIP2;4 from annual crop plant Hordeum vulgare (Barley) under the control of constitutive promoter was used to analyze the expression of HvPIP2; 4 and its efficacy during salt stress when NaCl concentration gradually increased. The pattern of expression of HvPIP2; 4 were found to be NaCl dose dependent during salt stress. The constitutive expression of HvPIP2;4 enhanced salt stress tolerance in Arabidopsis. HvPIP2;4 played a dominant role in improving plant salt tolerance. It may be very well presumed that overexpression of HvPIP2;4 in crop plant might benefit them by enhancing their salt tolerance capacity.Int J Appl Sci Biotechnol, Vol 4(4): 498-512


2018 ◽  
Vol 115 (51) ◽  
pp. 13123-13128 ◽  
Author(s):  
Chunzhao Zhao ◽  
Omar Zayed ◽  
Zheping Yu ◽  
Wei Jiang ◽  
Peipei Zhu ◽  
...  

The perception and relay of cell-wall signals are critical for plants to regulate growth and stress responses, but the underlying mechanisms are poorly understood. We found that the cell-wall leucine-rich repeat extensins (LRX) 3/4/5 are critical for plant salt tolerance in Arabidopsis. The LRXs physically associate with the RAPID ALKALINIZATION FACTOR (RALF) peptides RALF22/23, which in turn interact with the plasma membrane-localized receptor-like protein kinase FERONIA (FER). The lrx345 triple mutant as well as fer mutant plants display retarded growth and salt hypersensitivity, which are mimicked by overexpression of RALF22/23. Salt stress promotes S1P protease-dependent release of mature RALF22 peptides. Treatment of roots with mature RALF22/23 peptides or salt stress causes the internalization of FER. Our results suggest that the LRXs, RALFs, and FER function as a module to transduce cell-wall signals to regulate plant growth and salt stress tolerance.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Mohammad Nauman Khan ◽  
Yanhui Li ◽  
Zaid Khan ◽  
Linlin Chen ◽  
Jiahao Liu ◽  
...  

Abstract Background Salinity is a big threat to agriculture by limiting crop production. Nanopriming (seed priming with nanomaterials) is an emerged approach to improve plant stress tolerance; however, our knowledge about the underlying mechanisms is limited. Results Herein, we used cerium oxide nanoparticles (nanoceria) to prime rapeseeds and investigated the possible mechanisms behind nanoceria improved rapeseed salt tolerance. We synthesized and characterized polyacrylic acid coated nanoceria (PNC, 8.5 ± 0.2 nm, −43.3 ± 6.3 mV) and monitored its distribution in different tissues of the seed during the imbibition period (1, 3, 8 h priming). Our results showed that compared with the no nanoparticle control, PNC nanopriming improved germination rate (12%) and biomass (41%) in rapeseeds (Brassica napus) under salt stress (200 mM NaCl). During the priming hours, PNC were located mostly in the seed coat, nevertheless the intensity of PNC in cotyledon and radicle was increased alongside with the increase of priming hours. During the priming hours, the amount of the absorbed water (52%, 14%, 12% increase at 1, 3, 8 h priming, respectively) and the activities of α-amylase were significantly higher (175%, 309%, 295% increase at 1, 3, 8 h priming, respectively) in PNC treatment than the control. PNC primed rapeseeds showed significantly lower content of MDA, H2O2, and •O2− in both shoot and root than the control under salt stress. Also, under salt stress, PNC nanopriming enabled significantly higher K+ retention (29%) and significantly lower Na+ accumulation (18.5%) and Na+/K+ ratio (37%) than the control. Conclusions Our results suggested that besides the more absorbed water and higher α-amylase activities, PNC nanopriming improves salt tolerance in rapeseeds through alleviating oxidative damage and maintaining Na+/K+ ratio. It adds more knowledge regarding the mechanisms underlying nanopriming improved plant salt tolerance. Graphical abstract


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Shuang Feng ◽  
Lulu Ren ◽  
Hongwei Sun ◽  
Kun Qiao ◽  
Shenkui Liu ◽  
...  

Abstract Plant salt tolerance is a complex mechanism, and different plant species have different strategies for surviving salt stress. In the present study, we analyzed and compared the morphological and physiological responses of two willow species (Salix linearistipularis and Salix matsudana) from different habitats to salt stress. S. linearistipularis exhibited higher seed germination rates and seedling root Na+ efflux than S. matsudana under salt stress. After salt treatment, S. linearistipularis leaves exhibited less Na+ accumulation, loss of water and chlorophyll, reduction in photosynthetic capacity, and damage to leaf cell structure than leaves of S. matsudana. Scanning electron microscopy combined with gas chromatography mass spectrometry showed that S. linearistipularis leaves had higher cuticular wax loads than S. matsudana leaves. Overall, our results showed that S. linearistipularis had higher salt tolerance than S. matsudana, which was associated with different morphological and physiological responses to salt stress. Furthermore, our study suggested that S. linearistipularis could be a promising tree species for saline-alkali land greening and improvement.


2017 ◽  
Vol 30 (5) ◽  
pp. 423-432 ◽  
Author(s):  
Lin Chen ◽  
Yunpeng Liu ◽  
Gengwei Wu ◽  
Nan Zhang ◽  
Qirong Shen ◽  
...  

The inoculation of plants with plant-growth-promoting rhizobacterium has been an effective strategy for enhancing plant salt tolerance to diminish the loss of agricultural productivity caused by salt stress; however, the signal transmitted from bacteria to the plant under salt stress is poorly understood. In this study, the salt tolerance of Arabidopsis thaliana and Zea mays was enhanced by inoculation with Bacillus amyloliquefaciens SQR9. Using dialysis bags with different molecular weight cutoffs, we sorted through the molecules secreted by SQR9 and found that spermidine is responsible for enhancing plant salt tolerance. An SQR9 ΔspeB mutant deficient in spermidine production failed to induce plant salt tolerance. However, the induction of plant salt tolerance was disrupted by mutating genes involved in reduced glutathione (GSH) biosynthesis and the salt overly sensitive pathway in Arabidopsis. Using quantitative real-time polymerase chain reaction, this study demonstrated that spermidine produced by SQR9 leads to increased glutamine synthetase and glutathione reductase gene expression, leading to increased levels of GSH, which is critical for scavenging reactive oxygen species. SQR9-derived spermidine also upregulates the expression of NHX1 and NHX7, which sequesters Na+ into vacuoles and expels Na+ from the cell, thereby reducing ion toxicity.


Sign in / Sign up

Export Citation Format

Share Document