Thaumatin-like protein(Pe-TLP)acts as a positive factor in transgenic poplars enhanced resistance to spots disease

2020 ◽  
Vol 112 ◽  
pp. 101512
Author(s):  
Weibo Sun ◽  
Yan Zhou ◽  
Ali Movahedi ◽  
Hui Wei ◽  
Qiang Zhuge
Author(s):  
F. Al-Kufaishi

Two localities (Al-Marij and Laik) were selected to investigate the type of Quartz Grains from crustal material formed by evaporation of waters discharged by springs in Hit area, western Iraq, Previous studies on the crustal material (1,2) showed that the water discharged by these springs are associated with Abu-Jir fault system which run parallel to the Euphrates river,Factor analyses of the crustal and soil materials (50 samples analysed for 16 variables)(2) showed five factors; the first factor includes SiO2, Al2O3 and TiO2 with positive factor loading, and CaO, L.O.I. with negative loading and hence lead to the conclusion that the distribution of these variables is a reflection of transported clay material.This study concentrates on the use of SEM to investigate the contribution of Quartz grains found in the crustal material on two selected sites.


1997 ◽  
Vol 14 (2) ◽  
pp. 188-207
Author(s):  
Mohamed Aslam Mohamed Haneef ◽  
Ruzita Mohammad Amin

IntroductionIn the 1980s, the understanding and practice of Islam in Malaysiaentered a new phase. The global Islamic resurgence coupled with localMalaysian factors saw numerous important events talcing place. First, in1981 Dr. Mahathir Mohamed became Malaysia's fourth prime minister.Second, in 1982 the opposition Islamic Party of Malaysia (PAS) wastaken over by new leadership that claimed total commitment to settingup an Islamic state and rejecting nationalism and ethnic politics. Also, inthe same year, Anwar Ibrahim, then the president of the MalaysianIslamic Youth Movement (ABIM), joined Dr. Mohamed's government,winning the United Malays National Organization (UMNO) youthmovement's presidency and joining the UMNO-led cabinet as a juniorminister.The Mohamed administration, unlike its predecessors, openly supportedIslamic reform at all levels of society. Islam's role became more thanceremonial; it became a source of values for development, facilitatedthrough the Inculcation of Islamic Values Policy (in 1981) and the estab­lishment of numerous Islamic institutions such as the Islamic Bank ofMalaysia and the International Islamic University, Malaysia (IIUM) in1983. Although many see these developments as being merely politicallymotivated to counter the influence of PAS, it is without doubt that Dr.Mohamed was quite consistent with his earlier Views which he expressedin The Malay Dilemma. In his book he described Islam as the “greatestsingle influence on Malay value concepts and ethical codes,” thus beinga positive factor to develop the Malays ...


2013 ◽  
Vol 39 (9) ◽  
pp. 1576 ◽  
Author(s):  
Li-Hua YANG ◽  
Jin-Feng WANG ◽  
Li-Pu DU ◽  
Hui-Jun XU ◽  
Xue-Ning WEI ◽  
...  

2013 ◽  
Vol 38 (5) ◽  
pp. 773-779 ◽  
Author(s):  
Jin-Feng WANG ◽  
Li-Pu DU ◽  
Zhao LI ◽  
Su-Ping HUANG ◽  
Xing-Guo YE ◽  
...  

Planta ◽  
2021 ◽  
Vol 253 (5) ◽  
Author(s):  
Marciel Pereira Mendes ◽  
Richard Hickman ◽  
Marcel C. Van Verk ◽  
Nicole M. Nieuwendijk ◽  
Anja Reinstädler ◽  
...  

Abstract Main conclusion Overexpression of pathogen-induced cysteine-rich transmembrane proteins (PCMs) in Arabidopsis thaliana enhances resistance against biotrophic pathogens and stimulates hypocotyl growth, suggesting a potential role for PCMs in connecting both biological processes. Abstract Plants possess a sophisticated immune system to protect themselves against pathogen attack. The defense hormone salicylic acid (SA) is an important player in the plant immune gene regulatory network. Using RNA-seq time series data of Arabidopsis thaliana leaves treated with SA, we identified a largely uncharacterized SA-responsive gene family of eight members that are all activated in response to various pathogens or their immune elicitors and encode small proteins with cysteine-rich transmembrane domains. Based on their nucleotide similarity and chromosomal position, the designated Pathogen-induced Cysteine-rich transMembrane protein (PCM) genes were subdivided into three subgroups consisting of PCM1-3 (subgroup I), PCM4-6 (subgroup II), and PCM7-8 (subgroup III). Of the PCM genes, only PCM4 (also known as PCC1) has previously been implicated in plant immunity. Transient expression assays in Nicotiana benthamiana indicated that most PCM proteins localize to the plasma membrane. Ectopic overexpression of the PCMs in Arabidopsis thaliana resulted in all eight cases in enhanced resistance against the biotrophic oomycete pathogen Hyaloperonospora arabidopsidis Noco2. Additionally, overexpression of PCM subgroup I genes conferred enhanced resistance to the hemi-biotrophic bacterial pathogen Pseudomonas syringae pv. tomato DC3000. The PCM-overexpression lines were found to be also affected in the expression of genes related to light signaling and development, and accordingly, PCM-overexpressing seedlings displayed elongated hypocotyl growth. These results point to a function of PCMs in both disease resistance and photomorphogenesis, connecting both biological processes, possibly via effects on membrane structure or activity of interacting proteins at the plasma membrane.


2021 ◽  
Vol 22 (4) ◽  
pp. 2135
Author(s):  
Takashi Kanno ◽  
Changmin Kim ◽  
Daisuke Yamanaka ◽  
Ken-ichi Ishibashi ◽  
Hiroshi Tanaka ◽  
...  

Because Japanese cedar pollen (JCP) contains beta-1,3-d-glucan (BG), there is concern that its lingering presence in the atmosphere, especially during its scattering period, may cause false positives in the factor-G-based Limulus amebocyte lysate (LAL) assay used to test for deep mycosis (i.e., G-test). Hence, we examined whether the LAL assay would react positively with substances contained in JCP by using the G-test to measure JCP particles and extracts. BG was purified from the JCP extract on a BG-specific affinity column, and the percentage extractability was measured using three different BG-specific quantitative methods. The G-test detected 0.4 pg BG in a single JCP particle and 10 fg from a single particle in the extract. The percentage extractability of JCP-derived BG was not significantly different among the three quantitative methods. As the JCP particles should technically have been removed during serum separation, they should be less likely to be a direct false-positive factor. However, given that the LAL-assay-positive substances in the JCP extract were not distinguishable by the three BG-specific quantitative methods, we conclude that they may cause the background to rise. Therefore, in Japan false positives arising from JCP contamination should be considered when testing patients for deep mycosis.


2021 ◽  
Vol 22 (2) ◽  
pp. 527
Author(s):  
Małgorzata Podwyszyńska ◽  
Monika Markiewicz ◽  
Agata Broniarek-Niemiec ◽  
Bożena Matysiak ◽  
Agnieszka Marasek-Ciolakowska

Among the fungal diseases of apple trees, serious yield losses are due to an apple scab caused by Venturia inaequalis. Protection against this disease is based mainly on chemical treatments, which are currently very limited. Therefore, it is extremely important to introduce cultivars with reduced susceptibility to this pathogen. One of the important sources of variability for breeding is the process of polyploidization. Newly obtained polyploids may acquire new features, including increased resistance to diseases. In our earlier studies, numerous tetraploids have been obtained for several apple cultivars with ‘Free Redstar’ tetraploids manifesting enhanced resistance to apple scab. In the present study, tetraploids of ‘Free Redstar’ were assessed in terms of phenotype and genotype with particular emphasis on the genetic background of their increased resistance to apple scab. Compared to diploid plants, tetraploids (own-rooted plants) were characterized with poor growth, especially during first growing season. They had considerably shorter shoots, fewer branches, smaller stem diameter, and reshaped leaves. In contrast to own-rooted plants, in M9-grafted three-year old trees, no significant differences between diplo- and tetraploids were observed, either in morphological or physiological parameters, with the exceptions of the increased leaf thickness and chlorophyll content recorded in tetraploids. Significant differences between sibling tetraploid clones were recorded, particularly in leaf shape and some physiological parameters. The amplified fragment length polymorphism (AFLP) analysis confirmed genetic polymorphism of tetraploid clones. Methylation-sensitive amplification polymorphism (MSAP) analysis showed that the level of DNA methylation was twice as high in young tetraploid plants as in a diploid donor tree, which may explain the weaker vigour of neotetraploids in the early period of their growth in the juvenile phase. Molecular analysis showed that ‘Free Redstar’ cultivar and their tetraploids bear six Rvi genes (Rvi5, Rvi6, Rvi8, Rvi11, Rvi14 and Rvi17). Transcriptome analysis confirmed enhanced resistance to apple scab of ‘Free Redstar’ tetraploids since the expression levels of genes related to resistance were strongly enhanced in tetraploids compared to their diploid counterparts.


2021 ◽  
Vol 22 (2) ◽  
pp. 870
Author(s):  
Liang Ma ◽  
Yali Sun ◽  
Xinsen Ruan ◽  
Pei-Cheng Huang ◽  
Shi Wang ◽  
...  

Gibberella stalk rot (GSR) by Fusarium graminearum causes significant losses of maize production worldwide. Jasmonates (JAs) have been broadly known in regulating defense against pathogens through the homeostasis of active JAs and COI-JAZ-MYC function module. However, the functions of different molecular species of JAs and COI-JAZ-MYC module in maize interactions with Fusarium graminearum and regulation of diverse metabolites remain unknown. In this study, we found that exogenous application of MeJA strongly enhanced resistance to GSR. RNA-seq analysis showed that MeJA activated multiple genes in JA pathways, which prompted us to perform a genome-wide screening of key JA signaling components in maize. Yeast Two-Hybrid, Split-Luciferase, and Pull-down assays revealed that the JA functional and structural mimic coronatine (COR) functions as an essential ligand to trigger the interaction between ZmCOIa and ZmJAZ15. By deploying CRISPR-cas9 knockout and Mutator insertional mutants, we demonstrated that coi1a mutant is more resistant, whereas jaz15 mutant is more susceptible to GSR. Moreover, JA-deficient opr7-5opr8-2 mutant displayed enhanced resistance to GSR compared to wild type. Together, these results provide strong evidence that ZmJAZ15 plays a pivotal role, whereas ZmCOIa and endogenous JA itself might function as susceptibility factors, in maize immunity to GSR.


2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Caio H. N. Barros ◽  
Dishon W. Hiebner ◽  
Stephanie Fulaz ◽  
Stefania Vitale ◽  
Laura Quinn ◽  
...  

Abstract Background The ubiquitous nature of bacterial biofilms combined with the enhanced resistance towards antimicrobials has led to the development of an increasing number of strategies for biofilm eradication. Such strategies must take into account the existence of extracellular polymeric substances, which obstruct the diffusion of antibiofilm agents and assists in the maintenance of a well-defended microbial community. Within this context, nanoparticles have been studied for their drug delivery efficacy and easily customised surface. Nevertheless, there usually is a requirement for nanocarriers to be used in association with an antimicrobial agent; the intrinsically antimicrobial nanoparticles are most often made of metals or metal oxides, which is not ideal from ecological and biomedical perspectives. Based on this, the use of polymeric micelles as nanocarriers is appealing as they can be easily prepared using biodegradable organic materials. Results In the present work, micelles comprised of poly(lactic-co-glycolic acid) and dextran are prepared and then functionalised with curcumin. The effect of the functionalisation in the micelle’s physical properties was elucidated, and the antibacterial and antibiofilm activities were assessed for the prepared polymeric nanoparticles against Pseudomonas spp. cells and biofilms. It was found that the nanoparticles have good penetration into the biofilms, which resulted in enhanced antibacterial activity of the conjugated micelles when compared to free curcumin. Furthermore, the curcumin-functionalised micelles were efficient at disrupting mature biofilms and demonstrated antibacterial activity towards biofilm-embedded cells. Conclusion Curcumin-functionalised poly(lactic-co-glycolic acid)-dextran micelles are novel nanostructures with an intrinsic antibacterial activity tested against two Pseudomonas spp. strains that have the potential to be further exploited to deliver a secondary bioactive molecule within its core. Graphic Abstract


Sign in / Sign up

Export Citation Format

Share Document