Melt-electrospinning part I: processing parameters and geometric properties

Polymer ◽  
2004 ◽  
Vol 45 (22) ◽  
pp. 7597-7603 ◽  
Author(s):  
Jason Lyons ◽  
Christopher Li ◽  
Frank Ko
2016 ◽  
Vol 17 (3-4) ◽  
Author(s):  
Gernot Hochleitner ◽  
Almoatazbellah Youssef ◽  
Andrei Hrynevich ◽  
Jodie N. Haigh ◽  
Tomasz Jungst ◽  
...  

AbstractAdditive manufacturing with electrohydrodynamic direct writing is a promising approach for the production of polymeric microscale objects. In this study we investigate the stability of one such process, melt electrospinning writing, to maintain accurate placement of the deposited fibre throughout the entire print. The influence of acceleration voltage and feeding pressure on the deposited poly(ε-caprolactone) fibre homogeneity is described, and how this affects the variable lag of the jet drawn by the collector movement. Three classes of diameter instabilities were observed that led to poor printing quality: (1) temporary pulsing, (2) continuous pulsing, and (3) regular long bead defects. No breakup of the electrified jet was observed for any of the experiments. A simple approach is presented for the melt electrospinning user to evaluate fibre writing integrity, and adjust the processing parameters accordingly to achieve reproducible and constant diameter fibres.


Polymer ◽  
2003 ◽  
Vol 44 (19) ◽  
pp. 5721-5727 ◽  
Author(s):  
Sachiko Sukigara ◽  
Milind Gandhi ◽  
Jonathan Ayutsede ◽  
Michael Micklus ◽  
Frank Ko

2022 ◽  
Author(s):  
Junjie Xiong ◽  
Han Wang ◽  
Xingzi Lan ◽  
Yaqi Wang ◽  
Zixu Wang ◽  
...  

Abstract Many strategies have been adopted to engineer bone-ligament interface, which is of great value to both the tissue regeneration and the mechanism understanding underlying interface regeneration. However, how to recapitulate the complexity and heterogeneity of the native bone-ligament interface including the structural, cellular and mechanical gradients is still challenging. In this work, a bioinspired grid-crimp micropattern fabricated by melt electrospinning writing (MEW) was proposed to mimic the native structure of bone-ligament interface. The printing strategy of crimped fiber micropattern was developed and the processing parameters were optimized, which were used to mimic the crimp structure of the collagen fibrils in ligament. The guidance effect of the crimp angle and fiber spacing on the orientation of fibroblasts was studied, and both of them showed different levels of cell alignment effect.. MEW grid micropatterns with different fiber spacings were fabricated as bone region. Both the alkaling phosphatase activity and calcium mineralization results demonstrated the higher osteoinductive ability of the MEW grid structures, especially for that with smaller fiber spacing. The combined grid-crimp micropatterns were applied for the co-culture of fibroblasts and osteoblasts. The results showed that more cells were observed to migrate into the in-between interface region for the pattern with smaller fiber spacing, suggested the faster migration speed of cells. Finally, a cylindrical triphasic scaffold was successfully generated by rolling the grid-crimp micropatterns up, showing both structural and mechanical similarity to the native bone-ligament interface. In summary, the proposed strategy is reliable to fabricate grid-crimp triphasic micropatterns with controllable structural parameters to mimic the native bone-to-ligament structure, and the generated 3D scaffold shows great potential for the further bone-ligament interface tissue engineering.


Author(s):  
Filippos Tourlomousis ◽  
Azizbek Babakhanov ◽  
Houzhu Ding ◽  
Robert C. Chang

Controlling cell behavior has generated immense attention in the fields of tissue engineering and regenerative medicine. Particular emphasis has been given to the creation of 3D biomimetic cellular microenvironments that replicate the complex nature of the extracellular matrix (ECM). A key factor that has not been rigorously deconstructed using scalable, layered manufacturing approaches is the structural dimension or scale aspect of in vitro culture models. Melt electrospinning represents a bio-additive manufacturing process that has been relatively under-reported. Although complex in nature, the melt electrospinning process can furnish a 3D cell delivery format with physiologically relevant 3D structural cues. In the present work, poly-ε-caprolactone (PCL) has been chosen as the biomaterial substrate. Rheological studies that guide the design phase of the reported system have been performed for the entire PCL melt processing range, implicating the governing effect of the experimental melt temperature on the scale and the topography in the final processed material. Notable challenges that arise from the nature of the process with respect to the electrospun fiber stability and resolution have been overcome through the design of a novel heating element configuration. In this paper, a reliable biofabrication process with tunable processing of the fiber diameter and alignment is reported. Fundamental parametric studies utilizing the major processing parameters demonstrate the potential for the system to precisely fabricate 3D PCL scaffolds with microstructural features.


2013 ◽  
Vol 690-693 ◽  
pp. 3343-3349
Author(s):  
Feng Ying Zhang ◽  
Hua Tan ◽  
Hong Chen ◽  
Guang Sheng Liang

Ti-6Al-4V alloy samples were deposited by laser solid forming from blended 90wt%Ti+6wt%Al+4wt%V powders and from pre-alloyed Ti-6Al-4V powders under the same processing parameters, and the geometric properties of the deposited samples were studied comparatively. It was found that the height and the width of the deposited layers increased with the increase of the laser power and the decrease of the laser scanning velocity. Meanwhile, the height and the width of the deposited layer obtained from blended elemental powders are much higher than that from pre-alloyed powders. The mixing enthalpy for Ti-6Al-4V was calculated by using the Miedema model and the Toop model, and it was found that the alloying process for Ti, Al and V in the molten pool is exothermic, which is responsible for the higher deposited layer height and width of LSF Ti-6Al-4V from blended elemental powders due to the higher energy in the molten pool and the higher temperature of the molten pool.


2021 ◽  
Vol 11 (4) ◽  
pp. 1808
Author(s):  
Anna Bachs-Herrera ◽  
Omid Yousefzade ◽  
Luis J. del Valle ◽  
Jordi Puiggali

Melt electrospinning has been developed in the last decade as an eco-friendly and solvent-free process to fill the gap between the advantages of solution electrospinning and the need of a cost-effective technique for industrial applications. Although the benefits of using melt electrospinning compared to solution electrospinning are impressive, there are still challenges that should be solved. These mainly concern to the improvement of polymer melt processability with reduction of polymer degradation and enhancement of fiber stability; and the achievement of a good control over the fiber size and especially for the production of large scale ultrafine fibers. This review is focused in the last research works discussing the different melt processing techniques, the most significant melt processing parameters, the incorporation of different additives (e.g., viscosity and conductivity modifiers), the development of polymer blends and nanocomposites, the new potential applications and the use of drug-loaded melt electrospun scaffolds for biomedical applications.


Author(s):  
L. A. Bendersky ◽  
W. J. Boettinger

Rapid solidification produces a wide variety of sub-micron scale microstructure. Generally, the microstructure depends on the imposed melt undercooling and heat extraction rate. The microstructure can vary strongly not only due to processing parameters changes but also during the process itself, as a result of recalescence. Hence, careful examination of different locations in rapidly solidified products should be performed. Additionally, post-solidification solid-state reactions can alter the microstructure.The objective of the present work is to demonstrate the strong microstructural changes in different regions of melt-spun ribbon for three different alloys. The locations of the analyzed structures were near the wheel side (W) and near the center (C) of the ribbons. The TEM specimens were prepared by selective electropolishing or ion milling.


2013 ◽  
Vol 58 (1) ◽  
pp. 95-98 ◽  
Author(s):  
M. Zielinska ◽  
J. Sieniawski

Superalloy René 77 is very wide used for turbine blades, turbine disks of aircraft engines which work up to 1050°C. These elements are generally produced by the investment casting method. Turbine blades produced by conventional precision casting methods have coarse and inhomogeneous grain structure. Such a material often does not fulfil basic requirements, which concern mechanical properties for the stuff used in aeronautical engineering. The incorporation of controlled grain size improved mechanical properties. This control of grain size in the casting operation was accomplished by the control of processing parameters such as casting temperature, mould preheating temperature, and the use of grain nucleates in the face of the mould. For nickel and cobalt based superalloys, it was found that cobalt aluminate (CoAl2O4) has the best nucleating effect. The objective of this work was to determine the influence of the inoculant’s content (cobalt aluminate) in the surface layer of the ceramic mould on the microstructure and mechanical properties at high temperature of nickel based superalloy René 77. For this purpose, the ceramic moulds were made with different concentration of cobalt aluminate in the primary slurry was from 0 to 10% mass. in zirconium flour. Stepped and cylindrical samples were casted for microstructure and mechanical examinations. The average grain size of the matrix ( phase), was determined on the stepped samples. The influence of surface modification on the grain size of up to section thickness was considered. The microstructure investigations with the use of light microscopy and scanning electron microscopy (SEM) enable to examine the influence of the surface modification on the morphology of ’ phase and carbides precipitations. Verification of the influence of CoAl2O4 on the mechanical properties of castings were investigated on the basis of results obtained form creep tests.


Sign in / Sign up

Export Citation Format

Share Document