Stimuli responsive amphiphilic block copolymers for aqueous media synthesised via reversible addition fragmentation chain transfer polymerisation (RAFT)

Polymer ◽  
2005 ◽  
Vol 46 (18) ◽  
pp. 7726-7740 ◽  
Author(s):  
Murat Mertoglu ◽  
Sébastien Garnier ◽  
André Laschewsky ◽  
Katja Skrabania ◽  
Joachim Storsberg
2016 ◽  
Vol 16 (4) ◽  
pp. 4239-4246
Author(s):  
Zhijiao Dong ◽  
Bingbing Yang ◽  
Zhifeng Fu ◽  
Yan Shi

Well defined two kinds of cationic amphiphilic block copolymers Poly(4-vinylbenzyltriethylammonium chloride)-b-Poly(styrene) are synthesized by combining reversible addition fragmentation chain transfer polymerizations and post-polymerization quaternization. Block copolymers are characterized by GPC and 1HNMR. The self-assembly behaviors of the block copolymers are studied, which are characterized by TEM. For Poly(4-vinylbenzyltriethylammonium chloride)13-b-Poly(styrene)136, crew-cut spherical micelles are obtained by using DMF as the initial common solvent, and the majority of the pearl series aggregates and a small amount of rod-like aggregates are all observed by using the mixture of DMF and THF as the initial common solvent. The formation process of rod-like aggregates is proposed in three steps: the micellization of copolymer chains, the formation of pearl series aggregates from the collision and fusion of individual initial spherical micelles, and the transformation from pearl series aggregates to rod-like aggregates. For Poly(4- vinylbenzyltriethylammonium chloride)18-b-Poly(styrene)370, large compound micelles and complicated spherical aggregates and small vesicles are all obtained. The formation process of small vesicles is also proposed in three steps: the formation of initial spherical micelles with some hydrophilic block Poly(4-vinylbenzyltriethylammonium chloride) embedded in the core, the removing of the outer layer common solvent, and solvent nucleation in the center. It should be noted that solvent nucleation is critical, because of the hydrophilic block Poly(4-vinylbenzyltriethylammonium chloride) and the common solvent and water embedded in the core of the initial spherical micelles.


Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 601 ◽  
Author(s):  
Tatyana Elkin ◽  
Stacy Copp ◽  
Ryan Hamblin ◽  
Jennifer Martinez ◽  
Gabriel Montaño ◽  
...  

Polystyrene-b-polyethylene glycol (PS-b-PEG) amphiphilic block copolymers featuring a terminal tridentate N,N,N-ligand (terpyridine) were synthesized for the first time through an efficient route. In this approach, telechelic chain-end modified polystyrenes were produced via reversible addition-fragmentation chain-transfer (RAFT) polymerization by using terpyridine trithiocarbonate as the chain-transfer agent, after which the hydrophilic polyethylene glycol (PEG) block was incorporated into the hydrophobic polystyrene (PS) block in high yields via a thiol-ene process. Following metal-coordination with Mn2+, Fe2+, Ni2+, and Zn2+, the resulting metallo-polymers were self-assembled into spherical, vesicular nanostructures, as characterized by dynamic light scattering and transmission electron microscopy (TEM) imaging.


2010 ◽  
Vol 88 (3) ◽  
pp. 228-235 ◽  
Author(s):  
Chih-Feng Huang ◽  
Jeong Ae Yoon ◽  
Krzysztof Matyjaszewski

Amphiphilic block copolymers poly(N-vinylcarbazole)-b-poly(N-vinylpyrrolidone) (PNVK-b-PNVP) were prepared by xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Both the PNVK and PNVP macroinitiators and the resulting block copolymers had molecular weights close to theoretical values, predicted for efficient initiation, in the range of Mn = 30 000 to 90 000. The block copolymers dissolved in several organic solvents but, depending on their composition, in methanol formed either micelles or large aggregates, as confirmed by dynamic light scattering. The presence of globular aggregates was confirmed by tapping mode atomic force microscopy.


Molecules ◽  
2021 ◽  
Vol 26 (12) ◽  
pp. 3648
Author(s):  
Jiali Zhai ◽  
Bo Fan ◽  
San H. Thang ◽  
Calum J. Drummond

Non-lamellar lyotropic liquid crystalline (LLC) lipid nanoparticles contain internal multidimensional nanostructures such as the inverse bicontinuous cubic and the inverse hexagonal mesophases, which can respond to external stimuli and have the potential of controlling drug release. To date, the internal LLC mesophase responsiveness of these lipid nanoparticles is largely achieved by adding ionizable small molecules to the parent lipid such as monoolein (MO), the mixture of which is then dispersed into nanoparticle suspensions by commercially available poly(ethylene oxide)–poly(propylene oxide) block copolymers. In this study, the Reversible Addition-Fragmentation chain Transfer (RAFT) technique was used to synthesize a series of novel amphiphilic block copolymers (ABCs) containing a hydrophilic poly(ethylene glycol) (PEG) block, a hydrophobic block and one or two responsive blocks, i.e., poly(4-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)benzyl acrylate) (PTBA) and/or poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA). High throughput small angle X-ray scattering studies demonstrated that the synthesized ABCs could simultaneously stabilize a range of LLC MO nanoparticles (vesicles, cubosomes, hexosomes, inverse micelles) and provide internal particle nanostructure responsiveness to changes of hydrogen peroxide (H2O2) concentrations, pH and temperature. It was found that the novel functional ABCs can substitute for the commercial polymer stabilizer and the ionizable additive in the formation of next generation non-lamellar lipid nanoparticles. These novel formulations have the potential to control drug release in the tumor microenvironment with endogenous H2O2 and acidic pH conditions.


2021 ◽  
Author(s):  
Peter Černoch ◽  
Alessandro Jäger ◽  
Zulfia Cernochova ◽  
Vladimir Sincari ◽  
Lindomar Calumby Albuquerque ◽  
...  

A two-step synthetic approach via the combination of living cationic ring-opening (CROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization techniques was used to produce novel amphiphilic block copolymers based on...


2021 ◽  
Vol 22 (21) ◽  
pp. 11457
Author(s):  
Mariia Levit ◽  
Alena Vdovchenko ◽  
Apollinariia Dzhuzha ◽  
Natalia Zashikhina ◽  
Elena Katernyuk ◽  
...  

The self-assembly of amphiphilic block-copolymers is a convenient way to obtain soft nanomaterials of different morphology and scale. In turn, the use of a biomimetic approach makes it possible to synthesize polymers with fragments similar to natural macromolecules but more resistant to biodegradation. In this study, we synthesized the novel bio-inspired amphiphilic block-copolymers consisting of poly(N-methacrylamido-d-glucose) or poly(N-vinyl succinamic acid) as a hydrophilic fragment and poly(O-cholesteryl methacrylate) as a hydrophobic fragment. Block-copolymers were synthesized by radical addition–fragmentation chain-transfer (RAFT) polymerization using dithiobenzoate or trithiocarbonate chain-transfer agent depending on the first monomer, further forming the hydrophilic block. Both homopolymers and copolymers were characterized by 1H NMR and Fourier transform infrared spectroscopy, as well as thermogravimetric analysis. The obtained copolymers had low dispersity (1.05–1.37) and molecular weights in the range of ~13,000–32,000. The amphiphilic copolymers demonstrated enhanced thermal stability in comparison with hydrophilic precursors. According to dynamic light scattering and nanoparticle tracking analysis, the obtained amphiphilic copolymers were able to self-assemble in aqueous media into nanoparticles with a hydrodynamic diameter of approximately 200 nm. An investigation of nanoparticles by transmission electron microscopy revealed their spherical shape. The obtained nanoparticles did not demonstrate cytotoxicity against human embryonic kidney (HEK293) and bronchial epithelial (BEAS-2B) cells, and they were characterized by a low uptake by macrophages in vitro. Paclitaxel loaded into the developed polymer nanoparticles retained biological activity against lung adenocarcinoma epithelial cells (A549).


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Linping Zheng ◽  
Yun Chai ◽  
Yang Liu ◽  
Puyu Zhang

AbstractThe block copolymer of polystyrene-block-polyacrylate-blockpolystyrene (PSt-PAA-PSt) has been synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization using S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)-trithiocarbonate (BDATC) as chain transfer agent. Three copolymers form micelles in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). The nanostructures of the PSt-PAA-PSt micelles formed in ionic liquid were observed by transmission electron microscopy (TEM). The self-assembled morphologies of the micelles are strongly dependent on the length of PAA block chains when the chain length of PS is fixed. The affinity of PAA chains for water and [BMIM][PF6] reverses with increasing temperature. Research results show that the copolymer with low polydispersity can be obtained by controlling polymerization, and the flexibility of amphiphilic block copolymers for controlling nanostructure in an ionic liquid presents potential applications in many arenas.


2021 ◽  
Vol 9 (1) ◽  
pp. 38-50
Author(s):  
Hien Phan ◽  
Vincenzo Taresco ◽  
Jacques Penelle ◽  
Benoit Couturaud

Stimuli-responsive amphiphilic block copolymers obtained by PISA have emerged as promising nanocarriers for enhancing site-specific and on-demand drug release in response to a range of stimuli such as pH, redox agents, light or temperature.


Sign in / Sign up

Export Citation Format

Share Document