Engineering of pH-triggered nanoplatforms based on novel poly(2-methyl-2-oxazoline)-b-poly[2-(diisopropylamino)ethyl methacrylate] diblock copolymers with tunable morphologies for biomedical applications

2021 ◽  
Author(s):  
Peter Černoch ◽  
Alessandro Jäger ◽  
Zulfia Cernochova ◽  
Vladimir Sincari ◽  
Lindomar Calumby Albuquerque ◽  
...  

A two-step synthetic approach via the combination of living cationic ring-opening (CROP) and reversible addition-fragmentation chain transfer (RAFT) polymerization techniques was used to produce novel amphiphilic block copolymers based on...

Materials ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 601 ◽  
Author(s):  
Tatyana Elkin ◽  
Stacy Copp ◽  
Ryan Hamblin ◽  
Jennifer Martinez ◽  
Gabriel Montaño ◽  
...  

Polystyrene-b-polyethylene glycol (PS-b-PEG) amphiphilic block copolymers featuring a terminal tridentate N,N,N-ligand (terpyridine) were synthesized for the first time through an efficient route. In this approach, telechelic chain-end modified polystyrenes were produced via reversible addition-fragmentation chain-transfer (RAFT) polymerization by using terpyridine trithiocarbonate as the chain-transfer agent, after which the hydrophilic polyethylene glycol (PEG) block was incorporated into the hydrophobic polystyrene (PS) block in high yields via a thiol-ene process. Following metal-coordination with Mn2+, Fe2+, Ni2+, and Zn2+, the resulting metallo-polymers were self-assembled into spherical, vesicular nanostructures, as characterized by dynamic light scattering and transmission electron microscopy (TEM) imaging.


2010 ◽  
Vol 88 (3) ◽  
pp. 228-235 ◽  
Author(s):  
Chih-Feng Huang ◽  
Jeong Ae Yoon ◽  
Krzysztof Matyjaszewski

Amphiphilic block copolymers poly(N-vinylcarbazole)-b-poly(N-vinylpyrrolidone) (PNVK-b-PNVP) were prepared by xanthate-mediated reversible addition-fragmentation chain transfer (RAFT) polymerization. Both the PNVK and PNVP macroinitiators and the resulting block copolymers had molecular weights close to theoretical values, predicted for efficient initiation, in the range of Mn = 30 000 to 90 000. The block copolymers dissolved in several organic solvents but, depending on their composition, in methanol formed either micelles or large aggregates, as confirmed by dynamic light scattering. The presence of globular aggregates was confirmed by tapping mode atomic force microscopy.


e-Polymers ◽  
2011 ◽  
Vol 11 (1) ◽  
Author(s):  
Linping Zheng ◽  
Yun Chai ◽  
Yang Liu ◽  
Puyu Zhang

AbstractThe block copolymer of polystyrene-block-polyacrylate-blockpolystyrene (PSt-PAA-PSt) has been synthesized by reversible addition fragmentation chain-transfer (RAFT) polymerization using S,S′-Bis(α,α′-dimethyl-α′′-acetic acid)-trithiocarbonate (BDATC) as chain transfer agent. Three copolymers form micelles in an ionic liquid, 1-butyl-3-methylimidazolium hexafluorophosphate ([BMIM][PF6]). The nanostructures of the PSt-PAA-PSt micelles formed in ionic liquid were observed by transmission electron microscopy (TEM). The self-assembled morphologies of the micelles are strongly dependent on the length of PAA block chains when the chain length of PS is fixed. The affinity of PAA chains for water and [BMIM][PF6] reverses with increasing temperature. Research results show that the copolymer with low polydispersity can be obtained by controlling polymerization, and the flexibility of amphiphilic block copolymers for controlling nanostructure in an ionic liquid presents potential applications in many arenas.


Polymer ◽  
2004 ◽  
Vol 45 (13) ◽  
pp. 4383-4389 ◽  
Author(s):  
Tommy S.C Pai ◽  
Christopher Barner-Kowollik ◽  
Thomas P Davis ◽  
Martina H Stenzel

Molecules ◽  
2020 ◽  
Vol 25 (21) ◽  
pp. 5147
Author(s):  
Wanting Hou ◽  
Ruiqi Liu ◽  
Siwei Bi ◽  
Qian He ◽  
Haibo Wang ◽  
...  

Due to a strong retardation effect of o-nitrobenzyl ester on polymerization, it is still a great challenge to prepare amphiphilic block copolymers for polymersomes with a o-nitrobenzyl ester-based hydrophobic block. Herein, we present one such solution to prepare amphiphilic block copolymers with pure poly (o-nitrobenzyl acrylate) (PNBA) as the hydrophobic block and poly (N,N’-dimethylacrylamide) (PDMA) as the hydrophilic block using bulk reversible addition-fragmentation chain transfer (RAFT) polymerization of o-nitrobenzyl acrylate using a PDMA macro-RAFT agent. The developed amphiphilic block copolymers have a suitable hydrophobic/hydrophilic ratio and can self-assemble into photoresponsive polymersomes for co-loading hydrophobic and hydrophilic cargos into hydrophobic membranes and aqueous compartments of the polymersomes. The polymersomes demonstrate a clear photo-responsive characteristic. Exposure to light irradiation at 365 nm can trigger a photocleavage reaction of o-nitrobenzyl groups, which results in dissociation of the polymersomes with simultaneous co-release of hydrophilic and hydrophobic cargoes on demand. Therefore, these polymersomes have great potential as a smart drug delivery nanocarrier for controllable loading and releasing of hydrophilic and hydrophobic drug molecules. Moreover, taking advantage of the conditional releasing of hydrophilic and hydrophobic drugs, the drug delivery system has potential use in medical applications such as cancer therapy.


2011 ◽  
Vol 64 (6) ◽  
pp. 766 ◽  
Author(s):  
Bianca M. Blunden ◽  
Donald S. Thomas ◽  
Martina H. Stenzel

Amphiphilic block copolymers were prepared via reversible–addition fragmentation chain transfer (RAFT) polymerization and their synthesis, cross-linking, and degradation were studied using on-line monitoring. The focus of this work is the systematic alteration of the hydrophobic block using copolymers based on 5′-O-methacryloyluridine (MAU) and styrene at different compositions to determine the effect of the copolymer composition on the properties of the micelle. A poly(poly(ethylene glycol) methyl ether methacrylate) (PEGMA) macroRAFT agent was chain extended with a mixture of styrene and MAU. In both systems, an increasing fraction of styrene was found to reduce the rate of polymerization, but the functionality of the RAFT system was always maintained. The amphiphilic block copolymers were dialyzed against water to generate micelles with sizes between 17 and 25 nm according to dynamic light scattering (DLS). Increasing styrene content lead to smaller micelles (determined by DLS and transmission electron microscopy) and to lower critical micelle concentrations, which was measured using surface tensiometry. The micelles were further stabilized via core-cross-linking using bis(2-methacroyloxyethyl) disulfide as crosslinker. NMR analysis revealed a faster consumption of crosslinker with higher styrene content. These stable cross-linked micelles were investigated regarding their ability to degrade in the presence of dithiothreitol as a model reductant. Increasing the styrene content resulted in a faster degradation of the cross-linked micelles into unimers.


2013 ◽  
Vol 66 (12) ◽  
pp. 1564 ◽  
Author(s):  
Lily A. Dayter ◽  
Kate A. Murphy ◽  
Devon A. Shipp

A single reversible addition–fragmentation chain transfer (RAFT) agent, malonate N,N-diphenyldithiocarbamate (MDP-DTC) is shown to successfully mediate the polymerization of several monomers with greatly differing reactivities in radical/RAFT polymerizations, including both vinyl acetate and styrene. The chain transfer constants (Ctr) for MDP-DTC for both these monomers were evaluated; these were found to be ~2.7 in styrene and ~26 in vinyl acetate, indicating moderate control over styrene polymerization and good control of vinyl acetate polymerization. In particular, the MDP-DTC RAFT agent allowed for the synthesis of block copolymers of these two monomers without the need for protonation/deprotonation switching, as has been previously developed with N-(4-pyridinyl)-N-methyldithiocarbamate RAFT agents, or other end-group transformations. The thermal properties of the block copolymers were studied using differential scanning calorimetry, and those with sufficiently high molecular weight and styrene composition appear to undergo phase separation. Thus, MDP-DTC may be useful for the production of other block copolymers consisting of monomers with highly dissimilar reactivities.


Sign in / Sign up

Export Citation Format

Share Document