Thaumatin-like proteins and their possible role in protection against chilling injury in peach fruit

2010 ◽  
Vol 57 (2) ◽  
pp. 77-85 ◽  
Author(s):  
Anurag Dagar ◽  
Haya Friedman ◽  
Susan Lurie
Keyword(s):  
2021 ◽  
Vol 22 (9) ◽  
pp. 4437
Author(s):  
Han Ryul Choi ◽  
Min Jae Jeong ◽  
Min Woo Baek ◽  
Jong Hang Choi ◽  
Hee Cheol Lee ◽  
...  

Cold storage of peach fruit at low temperatures may induce chilling injury (CI). Pre-storage 1-MCP and high CO2 treatments were reported among the methods to ameliorate CI and reduce softening of peach fruit. However, molecular data indicating the changes associated with pre-storage 1-MCP and high CO2 treatments during cold storage of peach fruit are insufficient. In this study, a comparative analysis of the difference in gene expression and physico-chemical properties of fruit at commercial harvest vs. stored fruit for 12 days at 0 °C (cold-stored (CS), pre-storage 1-MCP+CS, and pre-storage high CO2+CS) were used to evaluate the variation among treatments. Several genes were differentially expressed in 1-MCP+CS- and CO2+CS-treated fruits as compared to CS. Moreover, the physico-chemical and sensory data indicated that 1-MCP+CS and CO2+CS suppressed CI and delayed ripening than the CS, which could lead to a longer storage period. We also identified the list of genes that were expressed commonly and exclusively in the fruit treated by 1-MCP+CS and CO2+CS and compared them to the fruit quality parameters. An attempt was also made to identify and categorize genes related to softening, physiological changes, and other ripening-related changes. Furthermore, the transcript levels of 12 selected representative genes from the differentially expressed genes (DEGs) in the transcriptome analysis were confirmed via quantitative real-time PCR (qRT-PCR). These results add information on the molecular mechanisms of the pre-storage treatments during cold storage of peach fruit. Understanding the genetic response of susceptible cultivars such as ‘Madoka’ to CI-reducing pre-storage treatments would help breeders release CI-resistant cultivars and could help postharvest technologists to develop more CI-reducing technologies.


BMC Genomics ◽  
2010 ◽  
Vol 11 (1) ◽  
pp. 43 ◽  
Author(s):  
Ricardo Nilo ◽  
Carlos Saffie ◽  
Kathryn Lilley ◽  
Ricardo Baeza-Yates ◽  
Verónica Cambiazo ◽  
...  

HortScience ◽  
2015 ◽  
Vol 50 (10) ◽  
pp. 1542-1548 ◽  
Author(s):  
Fang Yu ◽  
Zhiming Ni ◽  
Xingfeng Shao ◽  
Lina Yu ◽  
Hongxing Liu ◽  
...  

To explore differences in sucrose metabolism between peach fruit subjected to chilling stress (5 °C) and nonchilling stress (10 °C), sucrose concentration as well as the activities and gene expression levels for enzymes associated with sucrose metabolism were compared. Fruits stored at 5 °C accumulated higher concentrations of H2O2 and developed severe chilling injury (CI) compared with fruit kept at 10 °C. Activities and gene expression levels for enzymes related to sucrose metabolism, such as acid invertase (AI), neutral invertase (NI), sucrose synthase (SS), and sucrose phosphate synthase (SPS) were higher in fruit stored at 5 °C than at 10 °C throughout or late in storage. A sharp increase in net sucrose cleavage activity dramatically decreased sucrose concentration and increased reducing sugars at 5 °C. The sucrose concentration at 10 °C increased over the first 21 days and then declined slightly, and was higher than in fruit at 5 °C throughout storage. The increase in net sucrose cleavage activity at 5 °C is contrary to the expectation that biochemical reactions ordinarily proceed more rapidly with increasing temperature. We conclude that chilling stress stimulates the activities and transcription levels of enzymes involved in sucrose metabolism, resulting in increased sucrose cleavage.


2008 ◽  
Vol 14 (4) ◽  
pp. 385-391 ◽  
Author(s):  
G.A. Manganaris ◽  
M. Vasilakakis ◽  
I. Mignani ◽  
A. Manganaris

A comparative study between melting flesh peach fruit (Prunus persica L. Batsch cvs. Royal Glory and Morettini No 2) with contrasting tissue firmness during their on-tree ripening was conducted. Such fruit were cold stored (0 °C) for 4 and 6 weeks, and subsequently transferred at 25 °C (shelf life) for up to 5 days and evaluated for quality attributes and cell wall physicochemical properties. Data were partly unexpected, since fruit of the soft cultivar (Morettini No 2) were characterized by lower exo- and endo-PG activity, lower amounts of ethylene evolution, as well as higher amounts of endogenous calcium bound in the cell wall compared to fruit of the firmer cultivar (Royal Glory). These differences may be attributed to the incidence of chilling injury symptoms, evident as loss of juiciness in Morettini No 2 fruit, while Royal Glory fruit were characterized by acceptable appearance and eating quality even after 6 weeks cold storage plus 5 days shelf life, as the fruit softened gradually without cell rupture. Overall results showed that no direct relationship between cell wall physicochemical properties and sensory attributes can be established, indicating the complexity of peach fruit ripening. Since fruit of both cultivars presented similar tissue firmness after 5 days shelf life an attempt to distinguish normal peach fruit softening from cell rupture-chilling injury also has been made in the current study.


2013 ◽  
Vol 86 ◽  
pp. 53-61 ◽  
Author(s):  
Ke Wang ◽  
Xingfeng Shao ◽  
Yifu Gong ◽  
Yong Zhu ◽  
Hongfei Wang ◽  
...  

2021 ◽  
Vol 338 ◽  
pp. 128005
Author(s):  
Yaoyao Zhao ◽  
Congcong Song ◽  
David A. Brummell ◽  
Shuning Qi ◽  
Qiong Lin ◽  
...  

2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Xingxing Wang ◽  
Yi Chen ◽  
Shu Jiang ◽  
Feng Xu ◽  
Hongfei Wang ◽  
...  

Abstract Sucrose metabolism, particularly the decomposition of sucrose by invertase, plays a central role in plant responses to cold stress. Invertase inhibitors (INHs) evolved in higher plants as essential regulators of sucrose metabolism. By limiting invertase activity, INHs keep cellular sugar levels elevated, which provides enhanced protection to plants under stress. Our results showed that the expression of PpVIN2, the only vacuolar invertase (VIN) gene in peach fruit sensitive to chilling temperatures, increases significantly during cold storage, while VIN enzyme activity increases more modestly. We also found that peach fruit transiently overexpressing PpINH1 had decreased VIN activity. Interactions of PpINH1 and PpVIN2 with recombinant proteins were shown by yeast two-hybrid assays and bimolecular fluorescence complementation assays, as well as in vitro. During cold storage, trehalose-treated peach fruit had significantly increased PpINH1 expression, decreased VIN enzyme activity, and significantly higher sucrose content than did untreated fruit. As a result, the treated fruit had enhanced resistance to chilling injury. Collectively, our data show that the post-translational repression of VIN enzyme activity by PpINH1 helps maintain sucrose levels in peach fruit during cold storage, thereby improving resistance to chilling injury.


Sign in / Sign up

Export Citation Format

Share Document