Induction of defense response against Alternaria rot in Zaosu pear fruit by exogenous L-lysine through regulating ROS metabolism and activating defense-related proteins

2021 ◽  
Vol 179 ◽  
pp. 111567
Author(s):  
Yongxiang Liu ◽  
Yongcai Li ◽  
Yang Bi ◽  
Qianqian Jiang ◽  
Renyan Mao ◽  
...  
2013 ◽  
Vol 103 (10) ◽  
pp. 1028-1034 ◽  
Author(s):  
Carole Lambert ◽  
Ian Li Kim Khiook ◽  
Sylvia Lucas ◽  
Nadège Télef-Micouleau ◽  
Jean-Michel Mérillon ◽  
...  

Wood diseases like Esca are among the most damaging afflictions in grapevine. The defense mechanisms in this plant–pathogen interaction are not well understood. As some grapevine cultivars have been observed to be less susceptible to Esca than others, understanding the factors involved in this potentially stronger defense response can be of great interest. To lift part of this veil, we elicited Vitis vinifera plants of two cultivars less susceptible to Esca (‘Merlot’ and ‘Carignan’) and of one susceptible cultivar (‘Cabernet Sauvignon’), and monitored their defense responses at the leaf level. Our model of elicitation consisted in grapevine cuttings absorbing a culture filtrate of one causal agent of Esca, Phaemoniella chlamydospora. This model might reflect the early events occurring in Esca-affected grapevines. The two least susceptible cultivars showed an earlier and stronger defense response than the susceptible one, particularly with regard to induction of the PAL and STS genes, and a higher accumulation of stilbene compounds and some pathogenesis-related proteins.


Life ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 1064
Author(s):  
Anna Slavokhotova ◽  
Tatyana Korostyleva ◽  
Andrey Shelenkov ◽  
Vitalii Pukhalskiy ◽  
Irina Korottseva ◽  
...  

Plants have evolved a complex multilayered defense system to counteract various invading pathogens during their life cycle. In addition to silencing, considered to be a major molecular defense response against viruses, different signaling pathways activated by phytohormones trigger the expression of secondary metabolites and proteins preventing virus entry and propagation. In this study, we explored the response of cucumber plants to one of the global pathogens, cucumber green mottle mosaic virus (CGMMV), which causes severe symptoms on leaves and fruits. The inbred line of Cucumis sativus L., which is highly susceptible to CGMMV, was chosen for inoculation. Transcriptomes of infected plants at the early and late stages of infection were analyzed in comparison with the corresponding transcriptomes of healthy plants using RNA-seq. The changes in the signaling pathways of ethylene and salicylic and jasmonic acids, as well as the differences in silencing response and expression of pathogenesis-related proteins and transcription factors, were revealed. The results show that silencing was strongly suppressed in infected plants, while the salicylic acid and ethylene signaling pathways were induced. The genes encoding pathogenesis-related proteins and the genes involved in the jasmonic acid pathway changed their expression insignificantly. It was also found that WRKY and NAC were the most sensitive to CGMMV infection among the transcription factors detected.


2020 ◽  
Vol 7 (1) ◽  
Author(s):  
Mengjing Sun ◽  
Roeland E. Voorrips ◽  
Martijn van Kaauwen ◽  
Richard G. F. Visser ◽  
Ben Vosman

AbstractMyzus persicae has severe economic impact on pepper (Capsicum) cultivation. Previously, we identified two populations of M. persicae, NL and SW, that were avirulent and virulent, respectively on C. baccatum accession PB2013071. The transcriptomics approach used in the current study, which is the first study to explore the pepper−aphid interaction at the whole genome gene expression level, revealed genes whose expression is differentially regulated in pepper accession PB2013071 upon infestation with these M. persicae populations. The NL population induced ROS production genes, while the SW population induced ROS scavenging genes and repressed ROS production genes. We also found that the SW population can induce the removal of ROS which accumulated in response to preinfestion with the NL population, and that preinfestation with the SW population significantly improved the performance of the NL population. This paper supports the hypothesis that M. persicae can overcome the resistance in accession PB2013071 probably because of its ability to manipulate plant defense response especially the ROS metabolism and such ability may benefit avirulent conspecific aphids.


2014 ◽  
Vol 104 (10) ◽  
pp. 1021-1035 ◽  
Author(s):  
Alessandro Spagnolo ◽  
Maryline Magnin-Robert ◽  
Tchilabalo Dilezitoko Alayi ◽  
Clara Cilindre ◽  
Christine Schaeffer-Reiss ◽  
...  

Botryosphaeria dieback is a fungal grapevine trunk disease that represents a threat for viticulture worldwide due to the decreased production of affected plants and their premature death. This dieback is characterized by a typical wood discoloration called brown stripe. Herein, a proteome comparison of the brown striped wood from Botryosphaeria dieback-affected standing vines cultivars Chardonnay, Gewurztraminer, and Mourvèdre was performed. The transcript analysis for 15 targeted genes and the quantification of both total phenolics and specific stilbenes were also performed. Several pathogenesis-related proteins and members of the antioxidant system were more abundant in the brown striped wood of the three cultivars, whereas other defense-related proteins were less abundant. Additionally, total phenolics and some specific stilbenes were more accumulated in the brown striped wood. Strongest differences among the cultivars concerned proteins of the primary metabolism, which looked to be particularly impaired in the brown striped wood of ‘Chardonnay’. Low abundance of some proteins involved in defense response probably contributes to make global response insufficient to avoid the symptom development. The differential susceptibility of the three grapevine cultivars could be linked to the diverse expression of various proteins involved in defense response, stress tolerance, and metabolism.


2019 ◽  
Author(s):  
Xin Li ◽  
Liu Xueru ◽  
Pang Xinyue ◽  
Yin Yong ◽  
Yu Huichun ◽  
...  

Abstract Background It was demonstrated in our previous research that trypsin scavenges superoxide anions. In this study, the mechanisms of storage quality improvement by trypsin were evaluated in H. undatus .Results Trypsin significantly delayed the weight loss and decreased the levels of ROS and membrane lipid peroxidation. Transcriptome profiles of H. undatus treated with trypsin revealed the pathways and regulatory mechanisms of ROS genes that were up- or downregulated following trypsin treatment by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses. The current results showed that through the regulation of the expression of hub redox enzymes, especially thioredoxin-related proteins, trypsin can maintain low levels of endogenous active oxygen species, reduce malondialdehyde content and delay fruit aging. In addition, the results of protein-protein interaction networks suggested that the downregulated NAD(P)H and lignin pathways might be the key regulatory mechanisms governed by trypsin.Conclusions Trypsin significantly prolonged the storage life of H. undatus through regulatory on the endogenous ROS metabolism. As a new biopreservative, trypsin is highly efficient, safe and economical. Therefore, trypsin possesses technical feasibility for the quality control of fruit storage.


Author(s):  
J. Sudisha ◽  
R. G. Sharathchandra ◽  
K. N. Amruthesh ◽  
Arun Kumar ◽  
H. Shekar Shetty

2021 ◽  
Vol 25 (06) ◽  
pp. 1173-1186
Author(s):  
Hui Ouyang

Blackhead caused by Alternaria alternata is a fatal necrotrophic fungal that affects Korla fragrant pear. To date, little is known at the molecular level about the defense response of pear to blackhead disease and the pathogenic mechanism of A. alternata infection. To investigate the specific host-pathogen interaction between A. alternata and pear, we examined the accumulation of host-responsive mRNAs using RNA-seq technology. A total of 25,877 differentially expressed genes (DEGs) were identified. Further analysis revealed that the DEGs mainly participate in plant cell wall integrity, plant hormone pathways, plant-pathogen interactions and the defense response (transcription factors, defense-related proteins). Most of the DEGs involved in the plant hormone, PAMP-triggered immunity (PTI) and effector-triggered immunity (ETI) pathways, as well as defense-related proteins, were significantly up-regulated. In addition, DEGs encoding enzymes involved in cutin and wax synthesis and most transcription factors are significantly down-regulated. Based on these results, we speculate that these pathways play important roles in the response of pear to A. alternata. This study has presented new insights into the molecular mechanisms that regulate the response of pear fruits to A. alternata infection. © 2021 Friends Science Publishers


2019 ◽  
Vol 20 (19) ◽  
pp. 4793 ◽  
Author(s):  
Guangchao Yu ◽  
Qiumin Chen ◽  
Xiangyu Wang ◽  
Xiangnan Meng ◽  
Yang Yu ◽  
...  

Corynespora leaf spot caused by Corynespora cassiicola is one of the major diseases in cucumber (Cucumis sativus L.). However, the resistance mechanisms and signals of cucumber to C. cassiicola are unclear. Here, we report that the mildew resistance locus O (MLO) genes, CsMLO1 and CsMLO2, are both negative modulators of the cucumber defense response to C. cassiicola. Subcellular localization analysis showed that CsMLO1 and CsMLO2 are localized in the plasma membrane. Expression analysis indicated that the transcript levels of CsMLO1 and CsMLO2 are linked to the defense response to C. cassiicola. Transient overexpression of either CsMLO1 or CsMLO2 in cucumber cotyledons reduced resistance to C. cassiicola, whereas silencing of either CsMLO1 or CsMLO2 enhanced resistance to C. cassiicola. The relationships of pathogenesis-related proteins, reactive oxygen species (ROS)-associated genes, and abscisic acid (ABA)-related genes to the overexpression and silencing of CsMLO1/CsMLO2 in non-infested cucumber plants were investigated. The results indicated that CsMLO1 mediated resistance against C. cassiicola by regulating the expression of pathogenesis-related proteins and ROS-associated genes, as well as through ABA signaling pathway-associated genes. The CsMLO2-mediated resistance against C. cassiicola primarily involves regulation of the expression of pathogenesis-related proteins. Our findings will guide strategies to enhance the resistance of cucumber to corynespora leaf spot.


2020 ◽  
Author(s):  
Xin Li ◽  
Liu Xueru ◽  
Pang Xinyue ◽  
Yin Yong ◽  
Yu Huichun ◽  
...  

Abstract Background: It was demonstrated in our previous research that trypsin scavenges superoxide anions. In this study, the mechanisms of storage quality improvement by trypsin were evaluated in H. undatus. Results: Trypsin significantly delayed the weight loss and decreased the levels of ROS and membrane lipid peroxidation. Transcriptome profiles of H. undatus treated with trypsin revealed the pathways and regulatory mechanisms of ROS genes that were up- or downregulated following trypsin treatment by gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes pathway (KEGG) enrichment analyses. The current results showed that through the regulation of the expression of hub redox enzymes, especially thioredoxin-related proteins, trypsin can maintain low levels of endogenous active oxygen species, reduce malondialdehyde content and delay fruit aging. In addition, the results of protein-protein interaction networks suggested that the downregulated NAD(P)H and lignin pathways might be the key regulatory mechanisms governed by trypsin.Conclusions: Trypsin significantly prolonged the storage life of H. undatus through regulatory on the endogenous ROS metabolism. As a new biopreservative, trypsin is highly efficient, safe and economical. Therefore, trypsin possesses technical feasibility for the quality control of fruit storage.


Sign in / Sign up

Export Citation Format

Share Document