β-carotene production from soap stock by loofa-immobilized Rhodotorula rubra in an airlift photobioreactor

2017 ◽  
Vol 54 ◽  
pp. 9-19 ◽  
Author(s):  
Sajad Alipour ◽  
Alireza Habibi ◽  
Shoeib Taavoni ◽  
Kambiz Varmira
2003 ◽  
Vol 58 (3-4) ◽  
pp. 225-229 ◽  
Author(s):  
Emilina D. Simova ◽  
Ginka I. Frengova ◽  
Dora M. Beshkova

Under intensive aeration (1.3 l/l min) the associated growth of Rhodotorula rubra GED2 and Lactobacillus casei subsp. casei in cheese whey ultrafiltrate (55 g lactose/l) proceeded effectively for both cultures with production of maximum carotenoids (12.4 mg/l culture fluid). For maximum amount of carotenoids synthesized in the cell, the yeast required more intensive aeration than the aeration needed for synthesis of maximum concentration of dry cells. Maximum concentration of carotenoids in the cell (0.49 mg/g dry cells) was registered with air flow rate at 1.3 l/l min, and of dry cells (27.0 g/l) at 1.0 l/l min. An important characteristic of carotenogenesis by Rhodotorula rubra GED2 + Lactobacillus casei subsp. casei was established - the intensive aeration (above 1.0 l/l min) stimulated β-carotene synthesis (60% of total carotenoids).


2006 ◽  
Vol 61 (7-8) ◽  
pp. 571-577 ◽  
Author(s):  
Ginka I. Frengova ◽  
Emilina D. Simova ◽  
Dora M. Beshkova

The underlying method for obtaining a β-carotene-rich carotenoid-protein preparation and exopolysaccharides is the associated cultivation of the carotenoid-synthesizing lactose-negative yeast strain Rhodotorula rubra GED8 with the yogurt starter culture (Lactobacillus bulgaricus 2-11 + Streptococcus thermophilus 15HA) in whey ultrafiltrate (45 g lactose/l) with a maximum carotenoid yield of 13.37 mg/l culture fluid on the 4.5th day. The chemical composition of the carotenoid-protein preparation has been identified. The respective carotenoid and protein content is 497.4 μg/g dry cells and 50.3% per dry weight, respectively. An important characteristic of the carotenoid composition is the high percentage (51.1%) of β- carotene (a carotenoid pigment with the highest provitamin A activity) as compared to 12.9% and 33.7%, respectively, for the other two individual pigments - torulene and torularhodin. Exopolysaccharides (12.8 g/l) synthesized by the yeast and lactic acid cultures, identified as acid biopolymers containing 7.2% glucuronic acid, were isolated in the cell-free supernatant. Mannose, produced exclusively by the yeast, predominated in the neutral carbohydrate biopolymer component (76%). The mixed cultivation of R. rubra GED8 with the yogurt starter (L. bulgaricus 2-11 + S. thermophilus 15HA) in ultrafiltrate under conditions of intracellular production of maximum amount of carotenoids and exopolysaccharides synthesis enables combined utilization of the culture fluid from the fermentation process.


2004 ◽  
Vol 59 (1-2) ◽  
pp. 99-103 ◽  
Author(s):  
Ginka I. Frengova ◽  
Emilina D. Simova ◽  
Dora M. Beshkova

A mutant Rhodotorula rubra with enhanced carotenoid-synthesizing activity for synthesizing total carotenoids and β-carotene was obtained by N-methyl-N′-nitro-N-nitrosoguanidine mutagenesis. When co-cultivated with yogurt starter bacteria (Lactobacillus bulgaricus + Streptococcus thermophilus) in whey ultrafiltrate it produced 15.7 mg total carotenoids l-1 culture fluid or 946 μg total carotenoids g-1 dry cells of which 71% was β-carotene. Grown as a monoculture in glucose substrate, the mutant shown 1.4 times lower carotenoid-synthesizing activity, and the relative share of β-carotene in the total carotenoids was lower (63%). The individual pigments torulene and torularhodin were identified, whose mass fractions were (29% and 7%) and (24% and 4%), respectively, for the mutant grown as a monoculture and as a mixed culture with the yogurt bacteria.


2010 ◽  
Vol 80 (3) ◽  
pp. 159-167 ◽  
Author(s):  
Gabriela Villaça Chaves ◽  
Gisele Gonçalves de Souza ◽  
Andréa Cardoso de Matos ◽  
Dra. Wilza Abrantes Peres ◽  
Silvia Elaine Pereira ◽  
...  

Objective: To evaluate retinol and β-carotene serum levels and their relationship with risk factors for cardiovascular disease in individuals with morbid obesity, resident in Rio de Janeiro. Methodology: Blood serum concentrations of retinol and β-carotene of 189 morbidly obese individuals were assessed. The metabolic syndrome was identified according to the criteria of the National Cholesterol Education Program (NCEP) and World Health Organization (WHO). Lipid profile, insulin resistance, basal insulin, glycemia, blood pressure, and anthropometry and their correlation with retinol and β-carotene serum levels were evaluated. Results: Metabolic syndrome diagnosis was observed in 49.0% of the sample. Within this percentage the levels of β-carotene were significantly lower when body mass index increased. Serum retinol didn't show this behavior. Serum retinol inadequacy in patients with metabolic syndrome (61.3%), according to WHO criterion, was higher (15.8%) than when the whole sample was considered (12.7%). When metabolic syndrome was diagnosed by NCEP criterion, β-carotene inadequacy was higher (42.8%) when compared to the total sample (37.5%). There was a significant difference between average β-carotene values of patients with and without metabolic syndrome (p=0.048) according to the classification of the NCEP. Lower values were found in patients with metabolic syndrome. Conclusion: Considering the vitamin A contribution in antioxidant protection, especially when risk factors for cardiovascular disease are present, it is suggested that great attention be given to morbidly obese. This could aid in prevention and treatment of cardiovascular disease, which affects a significant part of the population.


2014 ◽  
Vol 84 (Supplement 1) ◽  
pp. 25-29 ◽  
Author(s):  
Guangwen Tang

Humans need vitamin A and obtain essential vitamin A by conversion of plant foods rich in provitamin A and/or absorption of preformed vitamin A from foods of animal origin. The determination of the vitamin A value of plant foods rich in provitamin A is important but has challenges. The aim of this paper is to review the progress over last 80 years following the discovery on the conversion of β-carotene to vitamin A and the various techniques including stable isotope technologies that have been developed to determine vitamin A values of plant provitamin A (mainly β-carotene). These include applications from using radioactive β-carotene and vitamin A, depletion-repletion with vitamin A and β-carotene, and measuring postprandial chylomicron fractions after feeding a β-carotene rich diet, to using stable isotopes as tracers to follow the absorption and conversion of plant food provitamin A carotenoids (mainly β-carotene) in humans. These approaches have greatly promoted our understanding of the absorption and conversion of β-carotene to vitamin A. Stable isotope labeled plant foods are useful for determining the overall bioavailability of provitamin A carotenoids from specific foods. Locally obtained plant foods can provide vitamin A and prevent deficiency of vitamin A, a remaining worldwide concern.


2020 ◽  
Vol 62 (1-2) ◽  
pp. 49-68
Author(s):  
T. O. Kondratiuk ◽  
T. V. Beregova ◽  
I. Yu. Parnikoza ◽  
S. Y. Kondratyuk ◽  
A. Thell

The identification of the diversity of microscopic fungi of lithobiont communities of the Argentine Islands in specimens collected during the 22nd Ukrainian Antarctic Expedition was the purpose of this work. Samples of rock, soil, mosses and lichens of rock micro-habitats of “Crustose lichen sub-formation and fruticose lichen and moss cushion sub-formation” were used in the work. These samples were used for extracting and cultivation of filamentous fungi on dense nutrient media. Determination of physiological and biochemical characteristics and identification of yeast-like fungi were performed using a microbiological analyser ‘Vitek-2’ (‘Bio Merieux’, France). Cultivation of microorganisms was carried out at temperatures from +2 to +37 °C. In results cultures of microscopic fungi of Zygomycota (Mucor circinelloides), Ascomycota (species of the genera cf. Tlielebolus, Talaromyces), representatives of the Anamorphic fungi group (Geomyces pannorum, species of the genera Alternaria, Acremonium, Aspergillus, Penicillium, and Cladosporium) were isolated from Antarctic samples. Microscopic fungi Penicillium spp. were dominated after the frequency in the studied samples (54.5%). Rhodotorula rubra and Candida sp. among isolated yeast fungi, and dark pigmented fungi represented by Aureobasidium pulhdans and Exophiala spp. were identified. The biological properties of a number of isolated fungi (the potential ability to synthesise important biologically active substances: melanins, carotenoids, lipids) are characterised. Mycobiota of rock communities of Argentine Islands is rich on filamentous and yeast fungi similarly to other regions of Antarctica. A number of fungi investigated are potentially able to synthesise biologically active substances. The dark pigmented species of the genera Cladosporium, Exophiala, Aureobasidium pulhdans, capable of melanin synthesis; ‘red’ yeast Rhodotorula rubra (carotenoid producers and resistant to toxic metals); Mucor circinelloides and Geomyces pannorum, lipid producers, are among these fungi. Yeast-like fungi assimilated a wide range of carbohydrates, which will allow them to be further used for cultivation in laboratory and process conditions. The collection of technologically promising strains of microorganisms, part of the Culture Collection of Fungi at Taras Shevchenko National University of Kyiv (Ukraine), is updated with isolated species (strains) of filamentous fungi and yeast – potential producers of biologically active substances, obtained within this study.


Sign in / Sign up

Export Citation Format

Share Document