The effect of iron oxide nanoparticles on Bacillus subtilis biofilm, growth and viability

2017 ◽  
Vol 62 ◽  
pp. 231-240 ◽  
Author(s):  
Dinali Ranmadugala ◽  
Alireza Ebrahiminezhad ◽  
Merilyn Manley-Harris ◽  
Younes Ghasemi ◽  
Aydin Berenjian
2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Madhu Bala Sathyanarayanan ◽  
Reneta Balachandranath ◽  
Yuvasri Genji Srinivasulu ◽  
Sathish Kumar Kannaiyan ◽  
Guruprakash Subbiahdoss

Microbial biofilms on biomaterial implants or devices are hard to eliminate by antibiotics due to their protection by exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune-cells. Application of metals in their nanoparticulated form is currently considered to resolve bacterial infections. Gold and iron-oxide nanoparticles are widely used in different medical applications, but their utilisation to eradicate biofilms on biomaterials implants is novel. Here, we studied the effect of gold and iron oxide nanoparticles on Staphylococcus aureus and Pseudomonas aeruginosa biofilms. We report that biofilm growth was reduced at higher concentrations of gold and iron-oxide nanoparticles compared to absence of nanoparticles. Thus nanoparticles with appropriate concentration could show significant reduction in biofilm formation.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3002
Author(s):  
Ilinca Margareta Vlad ◽  
Diana Camelia Nuță ◽  
Robert Viorel Ancuceanu ◽  
Miron Teodor Caproiou ◽  
Florea Dumitrascu ◽  
...  

Antimicrobial resistance is one of the major public health threats at the global level, urging the search for new antimicrobial molecules. The fluorene nucleus is a component of different bioactive compounds, exhibiting diverse pharmacological actions. The present work describes the synthesis, chemical structure elucidation, and bioactivity of new O-aryl-carbamoyl-oxymino-fluorene derivatives and the contribution of iron oxide nanoparticles to enhance the desired biological activity. The antimicrobial activity assessed against three bacterial and fungal strains, in suspension and biofilm growth state, using a quantitative assay, revealed that the nature of substituents on the aryl moiety are determinant for both the spectrum and intensity of the inhibitory effect. The electron-withdrawing inductive effect of chlorine atoms enhanced the activity against planktonic and adhered Staphylococcus aureus, while the +I effect of the methyl group enhanced the anti-fungal activity against Candida albicans strain. The magnetite nanoparticles have substantially improved the antimicrobial activity of the new compounds against planktonic microorganisms. The obtained compounds, as well as the magnetic core@shell nanostructures loaded with these compounds have a promising potential for the development of novel antimicrobial strategies.


2014 ◽  
Vol 2014 ◽  
pp. 1-6 ◽  
Author(s):  
Monica Thukkaram ◽  
Soundarya Sitaram ◽  
Sathish kumar Kannaiyan ◽  
Guruprakash Subbiahdoss

Biofilm growth on the implant surface is the number one cause of the failure of the implants. Biofilms on implant surfaces are hard to eliminate by antibiotics due to the protection offered by the exopolymeric substances that embed the organisms in a matrix, impenetrable for most antibiotics and immune cells. Application of metals in nanoscale is considered to resolve biofilm formation. Here we studied the effect of iron-oxide nanoparticles over biofilm formation on different biomaterial surfaces and pluronic coated surfaces. Bacterial adhesion for 30 min showed significant reduction in bacterial adhesion on pluronic coated surfaces compared to other surfaces. Subsequently, bacteria were allowed to grow for 24 h in the presence of different concentrations of iron-oxide nanoparticles. A significant reduction in biofilm growth was observed in the presence of the highest concentration of iron-oxide nanoparticles on pluronic coated surfaces compared to other surfaces. Therefore, combination of polymer brush coating and iron-oxide nanoparticles could show a significant reduction in biofilm formation.


Toxics ◽  
2020 ◽  
Vol 9 (1) ◽  
pp. 2
Author(s):  
Sehresh Khan ◽  
Nazneen Akhtar ◽  
Shafiq Ur Rehman ◽  
Shaukat Shujah ◽  
Eui Shik Rha ◽  
...  

Arsenic (As) contamination has emerged as a serious public health concern worldwide because of its accumulation and mobility through the food chain. Therefore, the current study was planned to check the effect of Bacillus subtilis-synthesized iron oxide nano particles (Fe3O4 NP) on rice (Oryza Sativa L.) growth against arsenic stress (0, 5, 10 and 15 ppm). Iron oxide nanoparticles were extracellular synthesized from Bacillus subtilis with a desired shape and size. The formations of nanoparticles were differentiated through UV-Visible Spectroscopy, FTIR, XRD and SEM. The UV-Visible spectroscopy of Bacillus subtilis-synthesized nanoparticles showed that the iron oxide surface plasmon band occurs at 268 nm. FTIR results revealed that different functional groups (aldehyde, alkene, alcohol and phenol) were present on the surface of nanoparticles. The SEM image showed that particles were spherical in shape with an average size of 67.28 nm. Arsenic toxicity was observed in seed germination and young seedling stage. The arsenic application significantly reduced seed germination (35%), root and shoots length (1.25 and 2.00 cm), shoot/root ratio (0.289), fresh root and shoots weight (0.205 and 0.260 g), dry root and shoots weight (6.55 and 6.75 g), dry matter percentage of shoot (12.67) and root (14.91) as compared to control. Bacillus subtilis-synthesized Fe3O4 NPs treatments (5 ppm) remarkably increased the germination (65%), root and shoot length (2 and 3.45 cm), shoot/root ratio (1.24) fresh root and shoot weight (0.335 and 0.275 mg), dry root and shoot weight (11.75 and 10.6 mg) and dry matter percentage of shoot (10.40) and root (18.37). Results revealed that the application of Fe3O4 NPs alleviated the arsenic stress and enhanced the plant growth. This study suggests that Bacillus subtilus-synthesized iron oxide nanoparticles can be used as nano-adsorbents in reducing arsenic toxicity in rice plants.


2018 ◽  
Vol 6 (10) ◽  
Author(s):  
Hosam Zaghloul ◽  
Doaa A. Shahin ◽  
Ibrahim El- Dosoky ◽  
Mahmoud E. El-awady ◽  
Fardous F. El-Senduny ◽  
...  

Antisense oligonucleotides (ASO) represent an attractive trend as specific targeting molecules but sustain poor cellular uptake meanwhile superparamagnetic iron oxide nanoparticles (SPIONs) offer stability of ASO and improved cellular uptake. In the present work we aimed to functionalize SPIONs with ASO targeting the mRNA of Cyclin B1 which represents a potential cancer target and to explore its anticancer activity. For that purpose, four different SPIONs-ASO conjugates, S-M (1–4), were designated depending on the sequence of ASO and constructed by crosslinking carboxylated SPIONs to amino labeled ASO. The impact of S-M (1–4) on the level of Cyclin B1, cell cycle, ROS and viability of the cells were assessed by flowcytometry. The results showed that S-M3 and S-M4 reduced the level of Cyclin B1 by 35 and 36%, respectively. As a consequence to downregulation of Cyclin B1, MCF7 cells were shown to be arrested at G2/M phase (60.7%). S-M (1–4) led to the induction of ROS formation in comparison to the untreated control cells. Furthermore, S-M (1–4) resulted in an increase in dead cells compared to the untreated cells and SPIONs-treated cells. In conclusion, targeting Cyclin B1 with ASO-coated SPIONs may represent a specific biocompatible anticancer strategy.


2018 ◽  
Author(s):  
Hattie Ring ◽  
Zhe Gao ◽  
Nathan D. Klein ◽  
Michael Garwood ◽  
John C. Bischof ◽  
...  

The Ferrozinen assay is applied as an accurate and rapid method to quantify the iron content of iron oxide nanoparticles (IONPs) and can be used in biological matrices. The addition of ascorbic aqcid accelerates the digestion process and can penetrate an IONP core within a mesoporous and solid silica shell. This new digestion protocol avoids the need for hydrofluoric acid to digest the surrounding silica shell and provides and accessible alternative to inductively coupled plasma methods. With the updated digestion protocol, the quantitative range of the Ferrozine assay is 1 - 14 ppm. <br>


Sign in / Sign up

Export Citation Format

Share Document