Comparative analysis of the chemical treatments used in keratin extraction from red sheep’s hair and the cell viability evaluations of this keratin for tissue engineering applications

2020 ◽  
Vol 90 ◽  
pp. 223-232 ◽  
Author(s):  
Kadathur Ramachandran Ramya ◽  
Ramar Thangam ◽  
Balaraman Madhan
RSC Advances ◽  
2014 ◽  
Vol 4 (62) ◽  
pp. 33013-33021 ◽  
Author(s):  
D. M. Correia ◽  
R. Gonçalves ◽  
C. Ribeiro ◽  
V. Sencadas ◽  
G. Botelho ◽  
...  

Poly(vinylidene fluoride) microparticles with diameters between 0.80 and 5.50 μm were produced. Cell viability shows their suitability for tissue engineering.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 109150-109156 ◽  
Author(s):  
Sakthivel Nagarajan ◽  
Céline Pochat-Bohatier ◽  
Catherine Teyssier ◽  
Sébastien Balme ◽  
Philippe Miele ◽  
...  

2D graphene oxide (GO) is used to enhance the mechanical properties of gelatin electrospun fibers. The GO does not show any significant influence on cell viability and cell attachment even though the expression of osteoblast gene is affected.


Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 428 ◽  
Author(s):  
Carolina Angulo-Pineda ◽  
Kasama Srirussamee ◽  
Patricia Palma ◽  
Victor M. Fuenzalida ◽  
Sarah H. Cartmell ◽  
...  

Applying electrical stimulation (ES) could affect different cellular mechanisms, thereby producing a bactericidal effect and an increase in human cell viability. Despite its relevance, this bioelectric effect has been barely reported in percolated conductive biopolymers. In this context, electroactive polycaprolactone (PCL) scaffolds with conductive Thermally Reduced Graphene Oxide (TrGO) nanoparticles were obtained by a 3D printing method. Under direct current (DC) along the percolated scaffolds, a strong antibacterial effect was observed, which completely eradicated S. aureus on the surface of scaffolds. Notably, the same ES regime also produced a four-fold increase in the viability of human mesenchymal stem cells attached to the 3D conductive PCL/TrGO scaffold compared with the pure PCL scaffold. These results have widened the design of novel electroactive composite polymers that could both eliminate the bacteria adhered to the scaffold and increase human cell viability, which have great potential in tissue engineering applications.


2018 ◽  
Vol 33 (7) ◽  
pp. 979-988 ◽  
Author(s):  
Toni Matson ◽  
Jonathan Gootee ◽  
Colten Snider ◽  
John Brockman ◽  
David Grant ◽  
...  

Soy lecithin has been shown to play a critical role in cell signaling and cellular membrane structure. In addition, it has been shown to increase biocompatibility, hydrophilicity, and decrease cytotoxicity. Gold nanoparticles have also shown to improve cellularity. Lecithin, gold nanoparticles, and polycaprolactone (PCL) solutions were electrospun in order to develop unique mesh materials for the treatment of osteoarthritis. The electrospinning parameters were optimized to achieve different solution ratios for fiber optimization. The amount of lecithin mixed with PCL varied from 30 wt.% to 50 wt.% . Gold nanoparticles (1% to 10% concentrations) were also added to lecithin-PCL mixture. The mechanical and chemical properties of the fiber mesh were analyzed via contact angle test, tensile mechanical tests, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Cell viability was measured using a WST-1 Assay. Scanning electron microscopy confirmed the successful formation of fiber mesh. The compositions of 40% soy lecithin with PCL in 40% solvent (40:40) resulted in the most well-formed fiber mesh. DSC melt temperatures were statically insignificant; uniaxial stresses and the moduli resulted in no significant difference between the test composition and pristine PCL compositions. WST-1 assay revealed all compositions were non-cytotoxic. Overall, the addition of lecithin increased hydrophilicity while maintaining cell viability and the mechanical and chemical properties of PCL. This study demonstrated that it is possible to successfully electrospin a lecithin, gold nanoparticle, and polycaprolactone scaffold for tissue engineering applications.


2021 ◽  
Vol 11 (2) ◽  
pp. 829
Author(s):  
Shyuan-Yow Chen ◽  
Yung-Chieh Cho ◽  
Tzu-Sen Yang ◽  
Keng-Liang Ou ◽  
Wen-Chien Lan ◽  
...  

The present study established a maximum standard for printing quality and developed a preliminary ideal index to print three-dimensional (3D) construct using the Gly-Arg-Gly-Asp (GRGD) peptide modified Pluronic-F127 hydrogel (hereafter defined as 3DG bioformer (3BE)) as bioink. In addition, the biocompatibility of 3BE for 3D printing applications was carefully investigated. For biocompatibility study and ideal printing parameter, we used the formulation of 3BE in three different concentrations (3BE-1: 25%, 3BE-2: 30%, and 3BE-3: 35%). The 3BE hydrogels were printed layer by layer as a cube-like construct with all diameters of the needle head under the same feed (100 mm/s). The printing parameters were determined using combinations of 3BE-1, 3BE-2, and 3BE-3 with three different standard needle sizes (Φ 0.13 mm, Φ 0.33 mm, and Φ 0.9 mm). The printed constructs were photographed and observed using optical microscopy. The cell viability and proliferation were evaluated using Live/Dead assay and immunofluorescence staining. Results showed that a stable of printed line and construct could be generated from the 3BE-3 combinations. Cytotoxicity assay indicated that the 3BE hydrogels possessed well biocompatibility. Bioprinting results also demonstrated that significant cell proliferation in the 3BE-3 combinations was found within three days of printing. Therefore, the study discovered the potential printing parameters of 3BE as bioink to print a stable construct that may also have high biocompatibility for cell encapsulation. This finding could serve as valuable information in creating a functional scaffold for tissue engineering applications.


Sign in / Sign up

Export Citation Format

Share Document