Electrospun PCL, gold nanoparticles, and soy lecithin composite material for tissue engineering applications

2018 ◽  
Vol 33 (7) ◽  
pp. 979-988 ◽  
Author(s):  
Toni Matson ◽  
Jonathan Gootee ◽  
Colten Snider ◽  
John Brockman ◽  
David Grant ◽  
...  

Soy lecithin has been shown to play a critical role in cell signaling and cellular membrane structure. In addition, it has been shown to increase biocompatibility, hydrophilicity, and decrease cytotoxicity. Gold nanoparticles have also shown to improve cellularity. Lecithin, gold nanoparticles, and polycaprolactone (PCL) solutions were electrospun in order to develop unique mesh materials for the treatment of osteoarthritis. The electrospinning parameters were optimized to achieve different solution ratios for fiber optimization. The amount of lecithin mixed with PCL varied from 30 wt.% to 50 wt.% . Gold nanoparticles (1% to 10% concentrations) were also added to lecithin-PCL mixture. The mechanical and chemical properties of the fiber mesh were analyzed via contact angle test, tensile mechanical tests, Fourier transform infrared spectroscopy (FTIR), and differential scanning calorimetry (DSC). Cell viability was measured using a WST-1 Assay. Scanning electron microscopy confirmed the successful formation of fiber mesh. The compositions of 40% soy lecithin with PCL in 40% solvent (40:40) resulted in the most well-formed fiber mesh. DSC melt temperatures were statically insignificant; uniaxial stresses and the moduli resulted in no significant difference between the test composition and pristine PCL compositions. WST-1 assay revealed all compositions were non-cytotoxic. Overall, the addition of lecithin increased hydrophilicity while maintaining cell viability and the mechanical and chemical properties of PCL. This study demonstrated that it is possible to successfully electrospin a lecithin, gold nanoparticle, and polycaprolactone scaffold for tissue engineering applications.

2020 ◽  
Vol 10 (19) ◽  
pp. 6911
Author(s):  
Malavika Nair ◽  
Serena M. Best ◽  
Ruth E. Cameron

Collagen-based constructs have emerged in recent years as ideal candidates for tissue engineering implants. For many biomedical applications, collagen is crosslinked in order to improve the strength, stiffness and stability of the construct. However, the crosslinking process may also result in unintended changes to cell viability, adhesion or proliferation on the treated structures. This review provides a brief overview of some of both the most commonly used and novel crosslinkers used with collagen, and suggests a framework by which crosslinking methods can be compared and selected for a given tissue engineering application.


2021 ◽  
Vol 13 (8) ◽  
pp. 1474-1478
Author(s):  
HeeJin Noh ◽  
Gwang-Bum Im ◽  
Taekyung Yu ◽  
Suk Ho Bhang

Control of the size and shape of nanoparticles significantly impacts the ability to control their physical and chemical properties. In this paper, we introduce a technique to split large nanoparticles into smaller ones. After the addition of ascorbic acid (AA), 50 nm-sized gold (Au) nanoparticles in the form of polycrystals were split into nanoparticles with sizes of 10 nm. We believe that AA plays a critical role in breaking down the Au particles. Additionally, this technique can be used to synthesize small AuPt bimetallic nanoparticles with a small amount of Pt on their surface showing that this reaction could help in the formation of a variety of small Au-based bimetallic nanoparticles.


2021 ◽  
pp. 1-10
Author(s):  
Anshu Siwach ◽  
Siddhartha Kaushal ◽  
Ratul Baishya

Abstract Mosses are one of the most important and dominant plant communities, especially in the temperate biome, and play a significant role in ecosystem function and dynamics. They influence the water, energy and element cycle due to their unique ecology and physiology. The present study was undertaken in three different temperate forest sites in the Garhwal Himalayas, viz., Triyuginarayan (Kedarnath Wildlife Sanctuary (KWLS)), Chakrata, and Kanasar forest range. The study was focused on understanding the influence of mosses on soil physical properties and nutrient availability. Different physico-chemical properties were analysed under two different substrata, that is, with and without moss cover in two different seasons, viz., monsoon and winter. We observed mosses to influence and alter the physical properties and nutrient status of soil in both seasons. All soil physical and chemical properties, except magnesium, showed significant difference within the substrates, among all the sites and across the two seasons. Besides the soil characteristics underneath the moss vegetation, the study also highlights the diversity of mosses found in the area. Mosses appear to create high nutrient microsites via a high rate of organic matter accumulation and retain nutrients for longer periods thus, maintaining ecosystem stability.


The Analyst ◽  
2019 ◽  
Vol 144 (4) ◽  
pp. 1052-1072 ◽  
Author(s):  
Yanjing Yang ◽  
Shian Zhong ◽  
Kemin Wang ◽  
Jin Huang

Gold nanoparticles (AuNPs) with unique physical and chemical properties have become an integral part of research in nanoscience.


2020 ◽  
Vol 5 (1) ◽  
Author(s):  
Boyang Huang

Abstract Carbon nanotubes (CNTs), with unique graphitic structure, superior mechanical, electrical, optical and biological properties, has attracted more and more interests in biomedical applications, including gene/drug delivery, bioimaging, biosensor and tissue engineering. In this review, we focus on the role of CNTs and their polymeric composites in tissue engineering applications, with emphasis on their usages in the nerve, cardiac and bone tissue regenerations. The intrinsic natures of CNTs including their physical and chemical properties are first introduced, explaining the structure effects on CNTs electrical conductivity and various functionalization of CNTs to improve their hydrophobic characteristics. Biosafety issues of CNTs are also discussed in detail including the potential reasons to induce the toxicity and their potential strategies to minimise the toxicity effects. Several processing strategies including solution-based processing, polymerization, melt-based processing and grafting methods are presented to show the 2D/3D construct formations using the polymeric composite containing CNTs. For the sake of improving mechanical, electrical and biological properties and minimising the potential toxicity effects, recent advances using polymer/CNT composite the tissue engineering applications are displayed and they are mainly used in the neural tissue (to improve electrical conductivity and biological properties), cardiac tissue (to improve electrical, elastic properties and biological properties) and bone tissue (to improve mechanical properties and biological properties). Current limitations of CNTs in the tissue engineering are discussed and the corresponded future prospective are also provided. Overall, this review indicates that CNTs are promising “next-generation” materials for future biomedical applications.


RSC Advances ◽  
2014 ◽  
Vol 4 (62) ◽  
pp. 33013-33021 ◽  
Author(s):  
D. M. Correia ◽  
R. Gonçalves ◽  
C. Ribeiro ◽  
V. Sencadas ◽  
G. Botelho ◽  
...  

Poly(vinylidene fluoride) microparticles with diameters between 0.80 and 5.50 μm were produced. Cell viability shows their suitability for tissue engineering.


RSC Advances ◽  
2016 ◽  
Vol 6 (110) ◽  
pp. 109150-109156 ◽  
Author(s):  
Sakthivel Nagarajan ◽  
Céline Pochat-Bohatier ◽  
Catherine Teyssier ◽  
Sébastien Balme ◽  
Philippe Miele ◽  
...  

2D graphene oxide (GO) is used to enhance the mechanical properties of gelatin electrospun fibers. The GO does not show any significant influence on cell viability and cell attachment even though the expression of osteoblast gene is affected.


2019 ◽  
Vol 3 (1) ◽  
pp. 78
Author(s):  
Muhammad Irvan

Chikuwa is one of Japanese traditional fishery food product that commonly made from potato starch, fish surimi, and some spices. To enhance Chikuwa physical and chemical properties especially in texture attribute and protein content, Gelatin can be added. Gelatin is a partial hydrolysis protein that usually added in food making process to improve the gumminess quality and the protein content. Gelatin can be derived from bone collagen, skin and fish scale. The purpose of this study is to analyze the effect of gelatin from various skin fish to the physical and chemical characteristics of Chikuwa. The research method used is experimental laboratories using a completely randomized design (CRD) with 3 replications. The data analysed with ANOVA and continued with BNJ analysis if there is a significant difference between the treatments. This research has divided into two stages. The first step aim is to make the gelatin from the skin of seabass, payus fish and tilapia with 3% concentrations. The second step is Chikuwa making added with gelatin. The parameters that observed are water content, protein content, white degree, gel strength, sensory attributes, folding, bite. The results showed that Chikuwa with the addition of gelatin from seabass, payus and tilapia skin are significantly different (p <0.05) due to the physical and chemical characteristics of Chikuwa. The best Chikuwa quality is Chikuwa with the addition of seabass gelatin, where the gelatin yield is 18.03 ± 0.68; the gelatin gel strength is 251.11 ± 1.08 bloom; the viscosity is 5.80 ± 0.15 cP; the gel Chikuwa sample strength is 954.54 ± 0.56 gcm and protein content is 22.01 ± 0.98%


2020 ◽  
Author(s):  
Fentanesh Haile Buruso ◽  
Zenebe Admasu Teferi

Abstract BackgroundThe decrease in the area under natural vegetation and its conversion into other types of use has resulted in resource degradation including soil quality loss. Soil properties response to changes in land use/ cover has shown spatial and temporal variations. Hence this study was carried out to examine the influence of land use/ cover changes on physical and chemical properties of the soils in Rib watershed. Soil samples were taken over three selected land use/ covers (natural forest, grazing and cultivated lands) in two agro- ecological zones (Dega and High Dega). Multivariate analysis of variance (MNOVA) and Pearson’s correlation was computed. ResultsThe study revealed that land use/ cover and altitude have influenced physical and chemical properties of the soil in the study watershed. Significant difference in distribution of soil texture, BD, OC, TN and pH among land use/ covers have been observed. Natural forest had higher OC, OC stock and TN than grazing and cultivated lands. The mean OC stock ranged from 188.32 t/ha in natural forest to 72.75t/ha in cultivated lands. Soil pH was slightly higher for natural forests and lower in the soils of grazing and cultivated lands. Significant difference (P<0.05) among the two agro ecologies were also observed in OC, Ca2+, clay, and silt.. ConclusionTherefore, land use/ cover changes have affected the concentration of TN, OC, increase soil acidity and compaction that can affect productive of soils and production of crops.


Sign in / Sign up

Export Citation Format

Share Document