scholarly journals User Interface for the Acquisition and Characterization of Defects and Performed Rework in Multi-Stage Production Systems

Procedia CIRP ◽  
2018 ◽  
Vol 78 ◽  
pp. 243-248 ◽  
Author(s):  
Colin Reiff ◽  
Florian Eger ◽  
Tobias Korb ◽  
Hermann Freiberger ◽  
Alexander Verl
2020 ◽  
Vol 13 (11) ◽  
pp. 1
Author(s):  
A. R. B. Zanco ◽  
A. Ferreira ◽  
G. C. M. Berber ◽  
E. N. Gonzaga ◽  
D. C. C. Sabino

The different integrated production systems can directly interfere with its bacterial community. The present study aimed to assess density, bacterial diversity and the influence of dry and rainy season in different integrated and an exclusive production system. The fallow and a native forest area was assessed to. Samples were collected in 2012 March and September. The isolation were carried out into Petri dishes containing DYGS medium. The number of colony forming units (CFU) was counted after 48 hours and. The bacterial density ranged between 106 and 107 CFU g-1 soil. The crop system affected the dynamics of the bacterial community only in the rainy season. The rainy season showed greater density of total bacteria when compared to the dry period regardless of the cropping system. The dendrograms with 80 % similarity showed thirteen and fourteen groups in the rainy and dry seasons. Isolates with the capacity to solubilize phosphate in vitro were obtained from all areas in the two seasons, but this feature has been prevalent in bacteria isolated during the rainy season


Agronomy ◽  
2021 ◽  
Vol 11 (5) ◽  
pp. 991
Author(s):  
Ana Maria Figueira Gomes ◽  
David Draper ◽  
Nascimento Nhantumbo ◽  
Rafael Massinga ◽  
José C. Ramalho ◽  
...  

Cowpea (Vigna unguiculata) is a neglected crop native to Africa, with an outstanding potential to contribute to the major challenges in food and nutrition security, as well as in agricultural sustainability. Two major issues regarding cowpea research have been highlighted in recent years—the establishment of core collections and the characterization of landraces—as crucial to the implementation of environmentally resilient and nutrition-sensitive production systems. In this work, we have collected, mapped, and characterized the morphological attributes of 61 cowpea genotypes, from 10 landraces spanning across six agro-ecological zones and three provinces in Mozambique. Our results reveal that local landraces retain a high level of morphological diversity without a specific geographical pattern, suggesting the existence of gene flow. Nevertheless, accessions from one landrace, i.e., Maringué, seem to be the most promising in terms of yield and nutrition-related parameters, and could therefore be integrated into the ongoing conservation and breeding efforts in the region towards the production of elite varieties of cowpea.


Author(s):  
Juho Lehmusto ◽  
Anton V. Ievlev ◽  
Ercan Cakmak ◽  
James R. Keiser ◽  
Bruce A. Pint

AbstractSeveral modern power production systems utilize supercritical CO2 (sCO2), which can contain O2 and H2O as impurities. These impurities may degrade the compatibility of structural alloys through accelerated oxidation. However, it remains unclear which of these impurities plays a bigger role in high-temperature reactions taking place in sCO2. In this study, various model and commercial Fe‐ and Ni‐based alloys were exposed in 300 bar sCO2 at 750 °C to low levels (50 ppm) of O2 and H2O for 1,000 h. 18O-enriched water was used to enable the identification of the oxygen source in the post-exposure characterization of the samples. However, oxygen from the water did not accumulate in the scale, which consisted of Cr2O3 in the cases where a protective oxide formed. A 2wt.% Ti addition to a Ni-22%Cr model alloy resulted in the formation of thicker oxides in sCO2, while a 1wt.% Al addition reduced the scale thickness. A synergistic effect of both Al and Ti additions resulted in an even thicker oxide than what was formed solely by Ti, similar to observations for Ni-based alloy 282.


2006 ◽  
Vol 145 (1) ◽  
pp. 51-68 ◽  
Author(s):  
Boaz Golany ◽  
Steven T. Hackman ◽  
Ury Passy

2018 ◽  
Author(s):  
Christian Vinueza-Burgos ◽  
David Ortega-Paredes ◽  
Cristian Narváez ◽  
Lieven De Zutter ◽  
Jeannete Zurita

AbstractAntimicrobial resistance (AR) is a worldwide concern. Up to a 160% increase in antibiotic usage in food animals is expected in Latin American countries. The poultry industry is an increasingly important segment of food production and contributor to AR. The objective of this study was to evaluate the prevalence, AR patterns and the characterization of relevant resistance genes in Extended Spectrum β-lactamases (ESBL) and AmpC E. coli from large poultry farms in Ecuador. Sampling was performed from June 2013 to July 2014 in 6 slaughterhouses that slaughter broilers from 115 farms totaling 384 flocks. Each sample of collected caeca was streaked onto TBX agar supplemented with cefotaxime (3 mg/l). In total, 176 isolates were analyzed for antimicrobial resistance patterns by the disk diffusion method and for blaCTX-M, blaTEM, blaCMY, blaSHV, blaKPC, and mcr-1 by PCR and sequencing. ESBL and AmpC E. coli were found in 362 flocks (94.3%) from 112 farms (97.4%). We found that 98.3% of the isolates were multi-resistant to antibiotics. Low resistance was observed for ertapenem and nitrofurantoin. The most prevalent ESBL genes were the blaCTX-M (90.9%) blaCTX-M-65, blaCTX-M-55 and blaCTX-M-3 alleles. Most of the AmpC strains presented the blaCMY-2 gene. Three isolates showed the mcr-1 gene. Poultry production systems represent a hotspot for antimicrobial resistance in Ecuador, possibly mediated by the extensive use of antibiotics. Monitoring this sector in national and regional plans of antimicrobial resistance surveillance should therefore be considered.


2020 ◽  
Vol 2 (7A) ◽  
Author(s):  
Xelimar Ramirez ◽  
Imeleta Luamanu ◽  
Ruben Michael Ceballos ◽  
Elizabeth Padilla Crespo

Anoxygenic phototrophic purple bacteria are ubiquitous in aquatic and terrestrial environments and demonstrate broad phenotypic diversity. Purple bacteriaderive energy from light under anaerobic conditions via anoxygenic photosynthesis, a process in which water is not the electron donor. It has been suggested that these bacteria are useful for a variety of applications, including: wastewater treatment; heavy metal remediation; nitrogen fixation; and, control of CH4 emissions. In this study, the goal was to isolate and characterize PNSB from shrimp ponds in Thailand. Surface water and sediment were collected. Enrichment cultures were prepared using Pfenning’s mineral media. As indicated by development of reddish color and turbidity, anoxygenic phototrophic growth was observed within two days of incubation. Cultures in liquid media and on solid plates exhibited a deep red or purple color ten weeks post-inoculation. Under light microscopy, enrichments consist of communities dominated by thin, elongated gram-negative cells with granules of elemental sulfur, which are characteristic of purple bacteria. Molecular methods confirm the presence of pufLM, a genetic biomarker for purple bacteria (e.g., Thiohalocapsa marina, Allochromatium vinosum, Roseovarius tolerans). Initial sequencing of key genes (i.e., pufLM) indicate that these environmental samples contain novel isolates or “geographic variants” that have not been previously described. We have developed a few pure cultures of multiple species from these environmental samples. Since shrimp farming is a key industry in southern Thailand, the characterization of the microbial communities in these ecosystems, including anoxygenic phototrophs, will provide insights into how to maintain water quality in these food production systems.


Author(s):  
Elisabeth Holmqvist

Handheld portable energy-dispersive X-ray fluorescence (pXRF) spectrometry is used for non-destructive chemical characterization of archaeological ceramics. Portable XRF can provide adequate analytical sensitivity to discriminate geochemically distinct ceramic pastes, and to identify compositional clusters that correlate with data patterns acquired by NAA or other high sensitivity techniques. However, successful non-destructive analysis of unprepared inhomogeneous ceramic samples requires matrix-defined scientific protocols to control matrix effects which reduce the sensitivity and precision of the instrumentation. Quantification of the measured fluorescence intensities into absolute concentration values and detection of light elements is encumbered by the lack of matrix matched calibration and proper vacuum facilities. Nevertheless, semi-quantitative values for a limited range of high Z elements can be generated. Unstandardized results are difficult to validate by others, and decreased analytical resolution of non-destructive surface analysis may disadvantage site-specific sourcing, jeopardize correct group assignments, and lead to under-interpretation of ceramic craft and production systems.


Sign in / Sign up

Export Citation Format

Share Document