scholarly journals Method for process monitoring of surface layer changes in turning of aluminium alloys using tools with a flank face chamfer

Procedia CIRP ◽  
2020 ◽  
Vol 87 ◽  
pp. 432-437 ◽  
Author(s):  
Thomas Junge ◽  
Hendrik Liborius ◽  
Thomas Mehner ◽  
Andreas Nestler ◽  
Andreas Schubert ◽  
...  
2012 ◽  
Vol 186 ◽  
pp. 192-197 ◽  
Author(s):  
Tomasz Tański ◽  
Krzysztof Labisz

The purpose of this work is electron microscope investigation of the Ti/TiCN/TiAlN and Cr/CrN/CrN coatings deposited by PVD process. The investigations were performed using scanning and transmission electron microscopy for the microstructure determination. By mind of the transmission electron microscopy the high resolution and phase determination was possible to obtain. The morphology was studied as well the lattice parameters for the layer matrix and substrate phase identification using diffraction methods was applied. After the coating of the aluminium alloys AlSi9Cu and AlSi9Cu4 with the selected coatings there are crystallites detected with the size of several tenth of diameter. The investigated samples were examined metallographically using electron microscope with different image techniques, also EDS microanalysis and electron diffraction was made. As an implication for the practice a new layer sequence can be possible to develop, based on PVD technique. Some other investigation should be performed in the future, but the knowledge found in this research shows an interesting investigation direction. The originality and value of this combination of TEM investigation for PVD deposited surface lasers on aluminium alloys makes the investigation very attractive for automotive and other industry branches. Some practical implications and employment of the surface treatment technology for elements, made from tool materials, with the PVD and CVD methods, to obtain the high wear resistant coatings, makes it possible to improve the properties of these materials by – among others – decreasing for example their friction coefficient, microhardness increase, improvement of the tribological contact conditions in practical use. One original value is it also to applied the PVD method on a common material like aluminium alloy. The double layer coatings worked out In the PVD process on the Al0Si-Cu alloys substrate hale the following configuration of the layers: bottom layer/gradient layer/wear resistant hard surface layer.


2010 ◽  
Vol 89-91 ◽  
pp. 53-58
Author(s):  
Sebastjan Žagar ◽  
Janez Grum

In the paper two aluminium alloys, i.e. 6082 and 7075, which were cold hardened by shot peening under different conditions, are treated. Surface hardening was carried out with S170 steel shot of the same diameter, particle hardness being 56 HRC. Other conditions were the operating pressure, mass flow, which provide different Almen intensities. The hardened layer was described by surface integrity. Macroscopic and microscopic analyses consisted in analyses of hardened profiles of hardness, and residual stresses in the thin surface layer. Research results indicated that there were significant differences among the characteristics chosen to describe surface integrity and that they had an important influence on the final condition of the surface layer. With too severe settings of the peening parameters, the surface properties got worse because of damages, which resulted in crack initiation and growth of the existing cracks.


2016 ◽  
Vol 61 (3) ◽  
pp. 1351-1356
Author(s):  
A. Włodarczyk-Fligier ◽  
K. Labisz ◽  
M. Polok-Rubiniec ◽  
J. Konieczny

Abstract An huge interest is observed in last years in metal matrix composite, mostly light metal based, which have found their applications in many industry branches, among others in the aircraft industry, automotive-, and armaments ones, as well as in electrical engineering and electronics, where one of the most important issue is related to the corrosion resistance, especially on the surface layer of the used aluminium alloys. This elaboration presents the influence of ceramic phase on the corrosion resistance, quality of the surface layer its thickness and structure of an anodic layer formed on aluminium alloys. As test materials it was applied the aluminium alloys Al-Si-Cu and Al-Cu-Mg, for which heat treatment processes and corrosion tests were carried out. It was presented herein grindability test results and metallographic examination, as well. Hardness of the treated alloys with those ones subjected to corrosion process were compared.


2014 ◽  
Vol 1036 ◽  
pp. 434-439 ◽  
Author(s):  
Krzysztof Labisz ◽  
Tomasz Tański ◽  
Beata Krupińska ◽  
Mariusz Krupiński ◽  
Wojciech Pakieła

The purpose of this paper was the investigation of laser treatment influence on the microstructure and properties of the surface layer of heat treated Al-Si-Cu cast aluminium alloys, using the high power diode laser (HPDL). The performed laser treatment involves remelting and feeding of ZrO2 ceramic powder into the aluminium surface. Based on the performed investigations it was possible to obtain the layer consisting of the heat affected zone, transition zone and remelted zone, without cracks and defects as well as has with a slightly higher hardness value compared to the non remelted material. The laser power range was chose as 1.5 to 2.0 kW and implicated by one process speed rate of 0.25 m/min. Also a powder size was used for alloying with the particle size of ca. 100 μm. The hardness value increases according to the laser power used so that the highest power applied gives to highest hardness value in the remelted layer [1-8]. The carried out investigations allow to conclude, that as a result of alloying of the heat-treated cast aluminium alloys with oxide ceramic powder the surface layer can be enriched with the powder particle and in some cases a high-quality top layer is possible to obtain. Very often to determine conditions of laser treatment are being used the numerical methods that would significantly shorten the time to find the most optimal parameters. [8]. Concerning original practical implications of this work there was important to investigate the appliance possibility of High Power Diode Laser (HPDL) for enhancement of the aluminium surface properties, especially the wear resistance and hardness. the scientific reason was also to describe structure changes and processes occurred in the laser remelted surface aluminium layer after ZrO2 feeding using HPDL laser [10-1. .


Author(s):  
Mykhaylo Student ◽  
◽  
Hanna Pokhmurska ◽  
Khrystyna Zadorozhna ◽  
Andrii Dzyubyk ◽  
...  

Materials ◽  
2020 ◽  
Vol 13 (24) ◽  
pp. 5725
Author(s):  
Magdalena Zawada-Michałowska ◽  
Jerzy Józwik ◽  
Stanisław Legutko ◽  
Dariusz Mika ◽  
Paweł Pieśko ◽  
...  

This paper presents the analysis of cutting force during surface layer milling of selected aluminium alloys, which are widely used in the aviation industry. The cutting force is one of the most important parameters determining the machinability of the material and also provides important information about the course of the cutting. The study analysed the influence of the technological parameters, i.e., cutting speed vc and depth of cut ap as well as the relation between cutting tool feed direction and rolling direction on the value of cutting force during milling of selected aluminium alloys, i.e., EN AW-2017A T451 and EN AW-2024 T351. The material anisotropy is a very important issue, since the engineering industry faces enormous problems related to the cutting of the tested materials that are usually supplied in the form of rolled plates. The surface layer was cut due to the fact that it accumulates the greatest residual stresses. The measurement process of cutting force was performed by using 9257B Kistler piezoelectric dynamometer. As part of the analysis of the results, the measurement uncertainty was also estimated, which was determined on the basis of two components obtained by using the A and B methods, respectively.


Author(s):  
D. N. Braski ◽  
P. D. Goodell ◽  
J. V. Cathcart ◽  
R. H. Kane

It has been known for some time that the addition of small oxide particles to an 80 Ni—20 Cr alloy not only increases its elevated-temperature strength, but also markedly improves its resistance to oxidation. The mechanism by which the oxide dispersoid enhances the oxidation resistance is being studied collaboratively by ORNL and INCO Alloy Products Company.Initial experiments were performed using INCONEL alloy MA754, which is nominally: 78 Ni, 20 Cr, 0.05 C, 0.3 Al, 0.5 Ti, 1.0 Fe, and 0.6 Y2O3 (wt %).Small disks (3 mm diam × 0.38 mm thick) were cut from MA754 plate stock and prepared with two different surface conditions. The first was prepared by mechanically polishing one side of a disk through 0.5 μm diamond on a syntron polisher while the second used an additional sulfuric acid-methanol electropolishing treatment to remove the cold-worked surface layer. Disks having both surface treatments were oxidized in a radiantly heated furnace for 30 s at 1000°C. Three different environments were investigated: hydrogen with nominal dew points of 0°C, —25°C, and —55°C. The oxide particles and films were examined in TEM by using extraction replicas (carbon) and by backpolishing to the oxide/metal interface. The particles were analyzed by EDS and SAD.


Sign in / Sign up

Export Citation Format

Share Document