scholarly journals An investigation of additively manufactured coolant nozzles for cylindrical grinding applications and progression to high stock removal

Procedia CIRP ◽  
2021 ◽  
Vol 101 ◽  
pp. 162-165
Author(s):  
Erica Dale Smith ◽  
David Curtis
2013 ◽  
Vol 797 ◽  
pp. 609-612 ◽  
Author(s):  
Takashi Onishi ◽  
Moriaki Sakakura ◽  
Naoki Sato ◽  
Takuya Kodani ◽  
Kazuhito Ohashi ◽  
...  

In cylindrical grinding, a sizing device is generally used to obtain the required dimension. However, the dimensional error can be caused by the thermal deformation of the workpiece even if grinding machine is controlled with the sizing device. To solve this problem, it is necessary to develop the grinding system that can consider the thermal deformation of the workpiece during grinding process. In this study, an advanced grinding system was developed, which can predict the net stock removal of ground workpiece immediately. The grinding experiment is carried out to verify the developed system.


2009 ◽  
Vol 407-408 ◽  
pp. 577-581
Author(s):  
Shi Chao Xiu ◽  
Zhi Jie Geng ◽  
Guang Qi Cai

During cylindrical grinding process, the geometric configuration and size of the edge contact area between the grinding wheel and workpiece have the heavy effects on the workpiece surface integrity. In consideration of the differences between the point grinding and the conventional high speed cylindrical grinding, the geometric and mathematic models of the edge contact area in point grinding were established. Based on the models, the numerical simulation for the edge contact area was performed. By means of the point grinding experiment, the effect mechanism of the edge contact area on the ground surface integrity was investigated. These will offer the applied theoretic foundations for optimizing the point grinding angles, depth of cut, wheel and workpiece speed, geometrical configuration and size of CBN wheel and some other grinding parameters in point grinding process.


2009 ◽  
Vol 147-149 ◽  
pp. 387-392
Author(s):  
Andrejus Henrikas Marcinkevičius

Traverse cylindrical grinding productivity and accuracy depend on many factors of rough, fine and spark out grinding. Evaluation of all these factors at manual calculation of the process plan is impossible, for that reason the engineer technologist selects the cutting rates approximately, and they are far from optimal. We have deduced equations for calculation of optimal cutting rates for that purpose. Because of task complexity the computer program was designed for calculations which is described in this paper.


2008 ◽  
Vol 42 (1-2) ◽  
pp. 93-101 ◽  
Author(s):  
Alex W. Moerlein ◽  
Eric R. Marsh ◽  
Theodore R. S. Deakyne ◽  
R. Ryan Vallance

1999 ◽  
Vol 122 (1) ◽  
pp. 59-69 ◽  
Author(s):  
William L. Cooper ◽  
Adrienne S. Lavine

The present work developed numerical codes that simulate steady-state grinding process kinematics. The three-dimensional modeling procedure entails the following: specifying the sizes, shapes, and positions of individual abrasive grains on the wheel surface; geometrically calculating the abrasive grains’ depth of cut distributions along the grinding zone as they pass through the grinding zone (neglecting wheel, abrasive grain, and workpiece deflections); using an empirical relationship to relate the abrasive grains’ geometric depths of cut to the grains’ actual depths of cut; and updating the workpiece surface to account for material removal. The resulting data include the abrasive grains’ average depth of cut distribution along the grinding zone, stock removal depth, stock removal rate, grinding zone shape, grinding zone length, percentage of grains impacting the workpiece, grain-workpiece impact frequency, etc. The calculated grinding zone lengths compare favorably with experimental data. This article examines a number of steady-state grinding processes. [S1087-1357(00)00101-5]


2021 ◽  
Vol 1037 ◽  
pp. 369-376
Author(s):  
Maxim Ilyushkin ◽  
Kirill Savelev ◽  
Oleg Krupennikov ◽  
Evgeniy S. Kiselev

The paper presents the results of numerical experimental studies of cutting titanium blanks using mathematical modeling programs, which make it possible to completely repeat technological processes in a computer (digital twin). The LS-DYNA product was used as a program to simulate the process of stock removal from titanium blank. It has been established that the use of this method adequately describes the cutting processes, including with the introduction of the energy of an ultrasonic field into the processing zone, can significantly reduce the duration of experimental research and evaluate the influence of the elements of the cutting mode and design parameters of the tool on the thermal power aspects of the formation of new surfaces of machine parts.


Sign in / Sign up

Export Citation Format

Share Document