Grinding Process Size Effect and Kinematics Numerical Analysis

1999 ◽  
Vol 122 (1) ◽  
pp. 59-69 ◽  
Author(s):  
William L. Cooper ◽  
Adrienne S. Lavine

The present work developed numerical codes that simulate steady-state grinding process kinematics. The three-dimensional modeling procedure entails the following: specifying the sizes, shapes, and positions of individual abrasive grains on the wheel surface; geometrically calculating the abrasive grains’ depth of cut distributions along the grinding zone as they pass through the grinding zone (neglecting wheel, abrasive grain, and workpiece deflections); using an empirical relationship to relate the abrasive grains’ geometric depths of cut to the grains’ actual depths of cut; and updating the workpiece surface to account for material removal. The resulting data include the abrasive grains’ average depth of cut distribution along the grinding zone, stock removal depth, stock removal rate, grinding zone shape, grinding zone length, percentage of grains impacting the workpiece, grain-workpiece impact frequency, etc. The calculated grinding zone lengths compare favorably with experimental data. This article examines a number of steady-state grinding processes. [S1087-1357(00)00101-5]

Materials ◽  
2019 ◽  
Vol 12 (6) ◽  
pp. 939 ◽  
Author(s):  
Amelia Nápoles Alberro ◽  
Hernán González Rojas ◽  
Antonio Sánchez Egea ◽  
Saqib Hameed ◽  
Reyna Peña Aguilar

Grinding energy efficiency depends on the appropriate selection of cutting conditions, grinding wheel, and workpiece material. Additionally, the estimation of specific energy consumption is a good indicator to control the consumed energy during the grinding process. Consequently, this study develops a model of material-removal rate to estimate specific energy consumption based on the measurement of active power consumed in a plane surface grinding of C45K with different thermal treatments and AISI 304. This model identifies and evaluates the dissipated power by sliding, ploughing, and chip formation in an industrial-scale grinding process. Furthermore, the instantaneous positions of abrasive grains during cutting are described to study the material-removal rate. The estimation of specific chip-formation energy is similar to that described by other authors on a laboratory scale, which allows to validate the model and experiments. Finally, the results show that the energy consumed by sliding is the main mechanism of energy dissipation in an industrial-scale grinding process, where it is denoted that sliding energy by volume unity decreases as the depth of cut and the speed of the workpiece increase.


Author(s):  
H. Xu ◽  
K. Komvopoulos

A quasi-static mechanics analysis of nanoscale surface polishing that provides insight into the surface topography evolution and the removal of material at the asperity level is presented. The analysis is based on a three-dimensional stochastic model that accounts for multiscale (fractal) surface roughness and elastic, elastic-plastic, and fully plastic asperity deformation by hard abrasive nanoparticles embedded in the soft surface layer of a rigid polishing plate. Numerical results of the steady-state roughness of the polished surface, material removal rate, and wear coefficient are presented in terms of the apparent contact pressure, polishing speed, original topography and mechanical properties of the polished surface, average size and density of nanoparticles, and surface roughness of the polishing plate. Simulation trends are associated with elastic-plastic and fully plastic asperity contacts, responsible for irreversible topography changes (roughening effect) and material removal (smoothening effect), respectively. Analytical trends and predictions of the steady-state roughness of the polished surface and material removal rate are shown to be in good agreement with experimental results of nanoscale surface polishing (lapping) of magnetic recording ceramic heads.


1961 ◽  
Vol 83 (4) ◽  
pp. 505-509 ◽  
Author(s):  
H. T. McAdams ◽  
Paul Rosenthal

The forces on a single-point cutting tool under conditions of progressive flank wear are analyzed under the assumptions of constant rake, friction, and shear angle. Relations between wear land area and stock removal rate are derived for the case of constant feed force. For the case of constant depth of cut, the relation between wear land area and feed force is developed.


2019 ◽  
Vol 13 (2) ◽  
pp. 237-245
Author(s):  
Ryunosuke Sato ◽  
Yoshio Ichida ◽  
◽  

We conducted a polishing test to clarify the change in polishing characteristics resulting from the wear of a pyramidal-structured polishing tool, and discuss the polishing mechanism unique to the pyramidal-structured polishing pad. When the pyramidal-structured polishing pad is used for polishing, there exists an initial polishing stage in which the removal rate is high but the finished surface is rough; followed by a steady-state polishing stage in which the wear rate is low, removal rate is stable, and a high-quality finish is obtained. The true polishing pressure is constant in the steady-state polishing stage regardless of the nominal polishing pressure, although it differs with workpiece hardness. Polishing was carried out using the pyramidal-structured polishing pad containing 6 μm alumina abrasive grains for 90 min without any scorching or clogging. This resulted in finished surfaces of 0.4 μmRzand 0.07 μmRzfor oxygen-free copper and S45C, respectively.


2012 ◽  
Vol 565 ◽  
pp. 52-57 ◽  
Author(s):  
Takazo Yamada ◽  
Hwa Soo Lee ◽  
Kohichi Miura

In grinding operation, elastic deformations of the grinding machine and the grinding wheel induce a residual stock removal of workpiece. On the other hand, thermal expansions of the workpiece and the grinding wheel increase the depth of cut. Therefore, calculation of a ground depth of cut and/or the grinding time has to be considered by the elastic deformations and the thermal expansions. From such a viewpoint, in this study, grinding process model taking into account the elastic deformations and the thermal expansions was proposed. This paper aims to estimate the grinding time by means of the proposed grinding process model.


2011 ◽  
Vol 325 ◽  
pp. 294-299 ◽  
Author(s):  
Akihiro Sakaguchi ◽  
Tomoyuki Kawashita ◽  
Shuji Matsuo

Grinding process is a very efficient machining technology because innumerable abrasive grains are fixed on the surface of grinding wheel. Especially, the distribution and shape of cutting edges which directly affect grinding process have a big influence on accuracy. Thus, it is very important to measure a wheel surface topography from a viewpoint of evaluating the wheel life and the performance and a relation between the one and the roughness. In this study, a three-dimensional measurement system of a grinding wheel surface with image processing is developed. In this system, the distribution and height of cutting edges are analyzed because only cutting edges can be selected from among all abrasive grains.


2010 ◽  
Vol 431-432 ◽  
pp. 269-272 ◽  
Author(s):  
Lan Yan ◽  
Zhi Xiong Zhou ◽  
Feng Jiang ◽  
X.K. Li ◽  
Yi Ming Rong

Grinding process can be considered as micro-cutting processes with the irregular abrasive grains on the surface of grinding wheel. The grain-workpiece interface directly forms the workpiece surface. Therefore, the study of the grain-workpiece interaction through micro-cutting analysis becomes necessary. But the experiments for single grain cutting are difficult to perform. Aimed at this problem, single grain cutting simulations of AISI D2 steel with a wide range of cutting parameters have been carried out with AdvantEdgeTM in this study. The effect of cutting parameters on cutting force, specific cutting force, material removal rate and critical depth of cut has been analyzed.


2018 ◽  
Vol 19 (1) ◽  
pp. 60-69
Author(s):  
Silvia Fernandes Rocha ◽  
Eduardo Antonio Gomes Marques

Abstract Lake bank filtration (LBF) is an alternative technique of water catchment. LBF has been used by several countries for more than 100 years as pre-treatment for water supply and hydrogeological characterization studies. LBF studies are still recent and essentially focus on water quality with little or no hydrogeological approach. The benefits obtained through this technique were the reason for the implementation of a pilot project on LBF on the lake banks of the ‘lake’ at the Federal University of Viçosa (UFV) in the city of Viçosa (MG), southeastern Brazil. Several hydrogeological studies were carried out in this research. In this article, we highlight the study by means of three-dimensional modeling of steady-state flow to learn the characteristics of the aquifer and its interaction with the ‘lake’. The three-dimensional numerical model of steady-state flow was elaborated for interpretative and predictive purposes. The results demonstrated the potential of the LBF system and how it can be used as an alternative for the UFV campus. The exposed scenario can help groundwater management in the study area.


Sign in / Sign up

Export Citation Format

Share Document