scholarly journals The Effects of Holding Time and the Sweeping Nitrogen Gas Flowrates on the Pyrolysis of EFB using a Fixed–Bed Reactor

2013 ◽  
Vol 53 ◽  
pp. 185-191 ◽  
Author(s):  
Alina Rahayu Mohamed ◽  
Zainab Hamzah ◽  
Mohamed Zulkali Mohamed Daud ◽  
Zarina Zakaria
2021 ◽  
Vol 15 ◽  
pp. 49-52
Author(s):  
Özlem Onay

Co-pyrolysis of lignite and pistachio seed (CPLPS) under nitrogen gas was performed in a Heinze retort. The effect of pyrolysis temperature on product distribution of CPLPS investigated under heating rate of 10°Cmin-1 and blending ratio of 50(wt)%. Biomass is higher yield to be pyrolyzed than lignite and addition of biomass promotes the pyrolysis of lignite. In the range of the experimental conditions investigated the yield of the product is proportional to pyrolysis temperature. On the other hand, considerable synergetic effects were observed during the co-pyrolysis in a fixed bed reactor leading to increase in oil yield. Maximum pyrolysis oil yield of 27.2% was obtained at pyrolysis temperature of 550°C. The obtained oils are characterized by GC, and elemental analysis.


2018 ◽  
Vol 67 ◽  
pp. 03026
Author(s):  
Aji Satria Nugraha ◽  
Setiadi ◽  
Tania Surya Utami

The industrial sectors that produce synthetic chemicals and and polymers rely heavily on fossil resources. Rice straw is very abundant in Indonesia and can be used as a substitute for fossil resources to produce petrochemical precursors. It is known that cellulose component is the main source for LG formation. Due to high contain of cellulose, the potential of rice straw can be transform by pyrolysis to produce bio-oils and derivative products towards levoglucosan (LG) should be developed. Levoglucosan is an important intermediate compound as it can be convert to the precursor of bio-polymer adipic acid, bio-ethanol, etc. Nowadays it’s still rarely research focused on this mechanism route producing LG through pyrolysis. LG then can run into a further reaction and produce derivative products. In order to obtain the highest yield of LG in bio-oil, a condition that may inhibit the further reaction of LG during pyrolysis takes place. The factor of biomass source and composition, temperature, and holding time (adjusted by N2 feed) most likely greatly affect the product composition formed at the end of pyrolysis. In this study, fast-pyrolysis of rice straw was performed in fixed-bed reactor (5 grams of biomass) under different temperature ranges (450 to 600 °C), N2 flow rate (1200 to 1582 ml/min) to maximize the yield of LG. The content of LG on bio-oil was measured by GC-MS instrument. The maximum yield of LG (67.78% of area) was obtained at an optimal temperature of 500°C with holding time of 1.35 s.


2013 ◽  
Vol 291-294 ◽  
pp. 748-754
Author(s):  
De Min He ◽  
Jun Guan ◽  
Lin Zhang ◽  
Qiu Min Zhang

In this paper, the pyrolysis of Honehe Lignite in N2 and N2-Methanol atmospheres were investigated on a fixed-bed reactor. The methanol flow rate, pressure, temperature and holding time were studied. The maximum of coal tar yields 12.01% (with methanol injected in) and 9.61% (absence of methanol) were achieved on the conditions of 520°C, 0.5MPa, N2 flow rate 50ml/min, methanol flow rate 0.1ml/min and holding time 20min, and the relative growing rate was about 25.0%. The gas from coal pyrolysis was detected by GC, and the coal tar was reprocessed and then detected by GC-MS. While the solid char was detected by IR to study the change of oxygen functional group during coal pyrolysis in N2-Methanol atmosphere. Compared with that pyrolysis in N2 atmosphere, the components, characteristics and properties of coal tar, gas and solid char varied a lot. The results showed that the injection of methanol into the system changed the products yields and distribution. The results showed that the total yields of phenol, cresol and xylenol (short for PCX) in the Acidic were about 1.93% and 1.15% (daf) in two atmospheres respectively, the PCX yields with methanol injected was about 1.67 times higher than that absence of methanol.


2019 ◽  
Vol 118 ◽  
pp. 01051
Author(s):  
Hewei Jiang ◽  
Yangtian Ye ◽  
Ping Lu

The torrefaction experiments of four biomass including agricultural biomass (corn straw (CS) and wheat straw (WS)) and forestry biomass (polar wood (PW) and cedar wood (CW)) were carried out in a fixed bed reactor at torrefaction temperature of 200-300°C and holding time of 10-60min, the effects of torrefaction temperature and holding time on biochar grindability based on the component analysis and the particle size distribution of ground biomass and biochars. The obtained results indicated that the mass fraction of ground biochar with particle size less than 150 μm increases with increasing torrefaction temperature, and the mass fraction of ground biochar with particle size less than 150 μm achieves 100%. The larger the λC, the better the grindability of biochar. The correlation between the grindability of the woody biochar and the λC is not as good as that of the straw biochar. The grindability of corn straw biochar and cedar wood biochar is improved with the increase of holding time at the same torrefaction temperature, however, the grindability of wheat straw biochar and polar wood biochar gets a little change, which can keep good grindability at higher torrefaction temperature large than 275°C.


2012 ◽  
Vol 512-515 ◽  
pp. 1784-1789 ◽  
Author(s):  
De Min He ◽  
Lin Zhang ◽  
Jun Guan ◽  
Qiu Min Zhang

The pyrolysis of Honghe lignite was investigated on low heating rate (about 20°C/min) conditions in a fixed bed reactor with 10g fed in. Nitrogen was used as carrier gas operating at the range from 50 to 200ml/min. And, the temperature was tested from 440 to 560°C, the pressure ranges from 0.1MPa to 1.2MPa. The yields of coal tar, char, water and gas were obtained in experiments. The maximum coal tar yield of 9.77% (dry coal) was achieved at 520°C, 50ml/min nitrogen flow rate, pressure 0.4MPa and 20 minutes holding time. Then methanol was injected in the system at the preheat temperature 240°C(a little higher than its critical temperature). The methanol flow rate, pressure and holding time were also taken into consideration. And the results were compared with those obtained in pyrolysis under nitrogen atmosphere. It showed that higher liquid yield with lower yields of char, gas and loss were obtained with the presence of methanol, but the differences of char yields were slight. The total sulfur removal for methanol presence is considerably higher than the absence of methanol in pyrolysis. Considering the mild conditions of the pyrolysis with presence of methanol, this method may be an appropriate way to make use of the lignite efficiently and environmentally.


2015 ◽  
Vol 1087 ◽  
pp. 77-80 ◽  
Author(s):  
Rohazriny Rohim ◽  
Razi Ahmad ◽  
Naimah Ibrahim ◽  
Nasrul Hamidin ◽  
Che Zulzikrami Azner Abidin

The eggshell waste which has potential mineral such as calcium oxide (CaO) was studied for biomass pyrolysis in a fixed bed reactor. The objective of this study was to characterize the CaO from waste eggshell and correlated the potential in pyrolysis process. Raw eggshells were analyzed by thermal gravimetric analyzer (TGA). Then, they were calcined at the temperature of 900oC for 1 hour with nitrogen gas. Raw and calcined eggshell were characterized by x-ray fluorescence (XRF). Non-catalytic and catalytic pyrolysis were done in the optimum pyrolysis condition with eggshell as a catalyst. XRF results showed that the percentage of CaO in raw eggshell was increased in calcined eggshell. Bio-oil product yield increased by 25.98% by using eggshell waste as a catalyst. CaO from waste eggshell improved the production of bio-oil in terms of quantity.


Sign in / Sign up

Export Citation Format

Share Document