scholarly journals The Effect of Pyrolysis Temperature on Copyrolysis of Lignite and Pistachio Seed in a Fixed-bed Reactor

2021 ◽  
Vol 15 ◽  
pp. 49-52
Author(s):  
Özlem Onay

Co-pyrolysis of lignite and pistachio seed (CPLPS) under nitrogen gas was performed in a Heinze retort. The effect of pyrolysis temperature on product distribution of CPLPS investigated under heating rate of 10°Cmin-1 and blending ratio of 50(wt)%. Biomass is higher yield to be pyrolyzed than lignite and addition of biomass promotes the pyrolysis of lignite. In the range of the experimental conditions investigated the yield of the product is proportional to pyrolysis temperature. On the other hand, considerable synergetic effects were observed during the co-pyrolysis in a fixed bed reactor leading to increase in oil yield. Maximum pyrolysis oil yield of 27.2% was obtained at pyrolysis temperature of 550°C. The obtained oils are characterized by GC, and elemental analysis.

2020 ◽  
Vol 849 ◽  
pp. 47-52
Author(s):  
Siti Jamilatun ◽  
Aster Rahayu ◽  
Yano Surya Pradana ◽  
Budhijanto ◽  
Rochmadi ◽  
...  

Nowadays, energy consumption has increased as a population increases with socio-economic developments and improved living standards. Therefore, it is necessary to find a replacement for fossil energy with renewable energy sources, and the potential to develop is biofuels. Bio-oil, water phase, gas, and char products will be produced by utilizing Spirulina platensis (SPR) microalgae extraction residue as pyrolysis raw material. The purpose of this study is to characterize pyrolysis products and bio-oil analysis with GC-MS. Quality fuel is good if O/C is low, H/C is high, HHV is high, and oxygenate compounds are low, but aliphatic and aromatic are high. Pyrolysis was carried out at a temperature of 300-600°C with a feed of 50 grams in atmospheric conditions with a heating rate of 5-35°C/min, the equipment used was a fixed-bed reactor. The higher the pyrolysis temperature, the higher the bio-oil yield will be to an optimum temperature, then lower. The optimum temperature of pyrolysis is 550°C with a bio-oil yield of 23.99 wt%. The higher the pyrolysis temperature, the higher the H/C, the lower O/C. The optimum condition was reached at a temperature of 500°C with the values of H/C, and O/C is 1.17 and 0.47. With an increase in temperature of 300-600°C, HHV increased from 11.64 MJ/kg to 20.63 MJ/kg, the oxygenate compound decreased from 85.26 to 37.55 wt%. Aliphatics and aromatics increased, respectively, from 5.76 to 36.72 wt% and 1.67 to 6.67 wt%.


Author(s):  
Rusmi Alias ◽  
Atiqah Mohd Rafee

The aim of this study is to characterise the liquid oil produced from pyrolysis of waste tyre. In this study, a series of experiment were carried out at various process temperature from 300 °C to 500 °C. The degradation study was carried out by using TGA, meanwhile the pyrolysis process was done using a fixed bed reactor. Liquid oil obtained from the pyrolysis was analysed using FTIR and GC-MS. The oil yield was found to decrease with increasing final pyrolysis temperature and the yield of the gas increased. The highest oil yield was 58.3 wt. %. For pyrolysis at 400 °C. The pyrolysis of waste tyre at atmospheric pressure commenced at about 340 °C and completed at 460 °C. An increase in the aromatic content of the oil was observed with increasing temperature. However, the aliphatic content decreased as the temperature increased from 300 °C to 500 °C. It was observed that the amount of aliphatic fraction in the oil decreased from 7.8 wt. % to 5.4 wt. %. In the meantime, the number of aromatic compounds increased from 37.4 wt. % to 51.2 wt. %. The main aromatic compounds were limonene, xylene, styrene, toluene, trimethylbenzene, ethylbenzene and benzene.


Author(s):  
M. Sigit Cahyono ◽  
Ucik Ika Fenti

The objective of the research was to investigate the influence of heating rate and temperature in the reactor on the yield and properties of pyrolysis oil obtained from waste plastic bag, that is considered as low-density polyethylene (LDPE). The experiments were performed in fixed bed reactor equipped with a steam atomizing burner, a temperature controller, and a condenser. Approximately, the amount of ten kilograms of waste plastic bag loaded into the reactor chamber and then pyrolyzed using the temperature between 250 and 450°C and heating rates of 5 to 15°C/min. The results showed that as the oil yield decreased, the heating rate increased. Alternatively, the oil yield increased with temperature and the wax content decreases as the temperature increases. The highest quantity of pyrolysis oil was produced from waste plasctic bag is 45%, in the temperature 450<sup>o</sup>C and the heating rate 15°C/min, with wax content of 25%, solid char of 12 % and non-condensable gas of 41%. The physical properties of oil were evaluated and compared to those of diesel oil. The analysis results showed that the oil product’s properties from pyrolysis of the waste plastic bag in temperature 450<sup>0</sup>C, were relatively closer to those of diesel oil with caloric value 11,043 kcal/kg, specific gravity of 0.812, kinematic viscosity 2.80 mm<sup>2</sup>/s, and flash point of 27<sup>o</sup>C.


1995 ◽  
Vol 31 (9) ◽  
pp. 137-144 ◽  
Author(s):  
T. Miyahara ◽  
M. Takano ◽  
T. Noike

The relationship between the filter media and the behaviour of anaerobic bacteria was studied using anaerobic fixed-bed reactors. At an HRT of 48 hours, the number of suspended acidogenic bacteria was higher than those attached to the filter media. On the other hand, the number of attached methanogenic bacteria was more than ten times as higher than that of suspended ones. The numbers of suspended and deposited acidogenic and methanogenic bacteria in the reactor operated at an HRT of 3 hours were almost the same as those in the reactor operated at an HRT of 48 hours. Accumulation of attached bacteria was promoted by decreasing the HRT of the reactor. The number of acidogenic bacteria in the reactor packed sparsely with the filter media was higher than that in the closely packed reactor. The number of methanogenic bacteria in the sparsely packed reactor was lower than that in the closely packed reactor.


2015 ◽  
Vol 659 ◽  
pp. 252-256
Author(s):  
Sudarat Chaiwatyothin ◽  
Wittawat Ratanathavorn ◽  
Tharapong Vitidsant ◽  
Prasert Reubroycharoen

Synthesis of nanoCu/ZnO catalyst for LPG production was prepared by ultrasonic spray pyrolysis (USP). Hollow spherical particles were obtained by USP technique using an aqueous solution of Cu (NO3)3.6H2O and Zn (NO3)3.3H2O with different concentration of 0.05, 0.1 and 0.5 molar under the pyrolysis temperatures of 600, 700 and 800°C. Mists of the solution were generated from the precursor solution by ultra sonic vibrators at frequency of ~1.7 MHz. The physicochemical properties of catalysts were characterized by X-ray diffraction, temperature-programmed reduction, scanning electron microscope, nitrogen adsorption-desorption, and energy dispersive X-ray spectrometer. The results showed that increasing in precursor concentration resulted in a large particle and particles size distributed in a range of 0.63-1.21 μm. Particles prepared at pyrolysis temperature 700°C exhibited homogeneous in size and shape compared to other temperature. The catalytic activity of nanoCu/ZnO-Pd-β catalysts was performed in a fixed-bed reactor for synthesizing LPG. The reaction took place at 260°C, 3.0 MPa, and the ratio of H2/CO = 2/1. All the products from the reactor were in gaseous state, and analyzed by on-line gas chromatography. The results showed that %CO conversion was high but decreased rapidly with increasing reaction time. Cu/ZnO catalyst prepared by co-precipitation gave higher %CO conversion than that prepared by ultrasonic spray pyrolysis. Moreover, hydrocarbon product distribution for Cu/ZnO catalyst produced at concentration 0.1 M 700°C by ultrasonic spray pyrolysis gave the highest LPG selectivity.


2012 ◽  
Vol 142 (11) ◽  
pp. 1382-1387 ◽  
Author(s):  
Dragomir B. Bukur ◽  
Zhendong Pan ◽  
Wenping Ma ◽  
Gary Jacobs ◽  
Burtron H. Davis

2013 ◽  
Vol 873 ◽  
pp. 562-566 ◽  
Author(s):  
Juan Liu ◽  
Xia Li ◽  
Qing Jie Guo

Chlorella samples were pyrolysed in a fixed bed reactor with γ-Al2O3 or ZSM-5 molecular sieve catalyst at 600°C. Liquid oil samples was collected from pyrolysis experiments in a condenser and characterized for water content, kinematic viscosity and heating value. In the presence of catalysts , gas yield decreased and liquid yield increased when compared with non-catalytic pyrolysis at the same temperatures. Moreover, pyrolysis oil from catalytic with γ-Al2O3 runs carries lower water content and lower viscosity and higher heating value. Comparison of two catalytic products, the results were showed that γ-Al2O3 has a higher activity than that of ZSM-5 molecular sieve. The acidity distribution in these samples has been measured by t.p.d, of ammonia, the γ-Al2O3 shows a lower acidity. The γ-Al2O3 catalyst shows promise for production of high-quality bio-oil from algae via the catalytic pyrolysis.


2015 ◽  
Vol 787 ◽  
pp. 67-71
Author(s):  
R.M. Alagu ◽  
E. Ganapathy Sundaram

Pyrolysis process in a fixed bed reactor was performed to derive pyrolytic oil from groundnut shell. Experiments were conducted with different operating parameters to establish optimum conditions with respect to maximum pyrolytic oil yield. Pyrolysis process was carried out without catalyst (thermal pyrolysis) and with catalyst (catalytic pyrolysis). The Kaolin is used as a catalyst for this study. The maximum pyrolytic oil yield (39%wt) was obtained at 450°C temperature for 1.18- 2.36 mm of particle size and heating rate of 60°C/min. The properties of pyrolytic oil obtained by thermal and catalytic pyrolysis were characterized through Fourier Transform Infrared Spectroscopy (FT-IR) and Gas Chromatography-Mass Spectrometry (GC-MS) techniques to identify the functional groups and chemical components present in the pyrolytic oil. The study found that catalytic pyrolysis produce more pyrolytic oil yield and improve the pH value, viscosity and calorific value of the pyrolytic oil as compared to thermal pyrolysis.


Sign in / Sign up

Export Citation Format

Share Document