scholarly journals Investigation of Energy Performance in Conventional and Lightweight Building Components with the use of Phase Change Materials (PCMS): Energy Savings in Summer Season

2017 ◽  
Vol 38 ◽  
pp. 796-803 ◽  
Author(s):  
A. Karaoulis
2013 ◽  
Vol 19 (4) ◽  
pp. 518-528 ◽  
Author(s):  
Giuseppina Ciulla ◽  
Valerio Lo Brano ◽  
Antonio Messineo ◽  
Giorgia Peri

The use of novel building materials that contain active thermal components would be a major advancement in achieving significant heating and cooling energy savings. In the last 40 years, Phase Change Materials or PCMs have been tested as thermal mass components in buildings, and most studies have found that PCMs enhance the building energy performance. The use of PCMs as an energy storage device is due to their relatively high fusion latent heat; during the melting and/or solidification phase, a PCM is capable of storing or releasing a large amount of energy. PCMs in a wall layer store solar energy during the warmer hours of the day and release it during the night, thereby decreasing and shifting forward in time the peak wall temperature. In this paper, an algorithm is presented based on the general Fourier differential equations that solve the heat transfer problem in multi-layer wall structures, such as sandwich panels, that includes a layer that can change phase. In detail, the equations are proposed and transformed into formulas useful in the FDM approach (finite difference method), which solves the system simultaneously for the temperature at each node. The equation set proposed is accurate, fast and easy to integrate into most building simulation tools in any programming language. The numerical solution was validated using a comparison with the Voller and Cross analytical test problem.


2016 ◽  
Vol 26 (10) ◽  
pp. 1429-1443 ◽  
Author(s):  
Marianna E. Stamatiadou ◽  
Dimitrios I. Katsourinis ◽  
Maria A. Founti

In this study, a lightweight residential building in Greece was investigated, focusing on the summer comfort when wallboards with phase change materials (PCM) were installed in the external and internal walls. The effectiveness of the PCM wallboards installed was numerically assessed, while the energy performance of the building was examined, in order to quantify the effect of PCM in the annual cooling load needs, as a way of saving energy. Potential bigger energy savings were evaluated by defining the appropriate PCM melting temperature range and the ‘energy-conscious’ occupant behaviour (passive vs. active). Results were expressed in terms of percentage savings of cooling loads and with comparison to wall elements incorporated with plain gypsumboards instead of the PCM wallboards. The optimum phase change temperature change for the specific location was investigated by examining two-phase change transition temperatures of the PCM wallboards (PCM24 and PCM26 respectively). The use of PCM24 produced a 29% reduction of annual cooling loads, compared to 16% reduction produced by PCM26. Five scenarios were also examined, showing the behaviour of the PCM which was enhanced when a cooling system was installed. The cooling needs were lowered by an average of 25.7%, compared to the respective no-PCM scenarios.


Fluids ◽  
2021 ◽  
Vol 6 (8) ◽  
pp. 275
Author(s):  
Ahmed J. Hamad

One essential utilization of phase change materials as energy storage materials is energy saving and temperature control in air conditioning and indirect solar air drying systems. This study presents an experimental investigation evaluating the characteristics and energy savings of multiple phase change materials subjected to internal flow in an air heating system during charging and discharging cycles. The experimental tests were conducted using a test rig consisting of two main parts, an air supply duct and a room model equipped with phase change materials (PCMs) placed in rectangular aluminum panels. Analysis of the results was based on three test cases: PCM1 (Paraffin wax) placed in the air duct was used alone in the first case; PCM2 (RT–42) placed in the room model was used alone in the second case; and in the third case, the two PCMs (PCM1 and PCM2) were used at the same time. The results revealed a significant improvement in the energy savings and room model temperature control for the air heating system incorporated with multiple PCMs compared with that of a single PCM. Complete melting during the charging cycle occurred at temperatures in the range of 57–60 °C for PCM1 and 38–43 °C for PCM2, respectively, thereby validating the reported PCMs’ melting–solidification results. Multiple PCMs maintained the room air temperature at the desired range of 35–45.2 °C in the air heating applications by minimizing the air temperature fluctuations. The augmentation in discharging time and improvement in the room model temperature using multiple PCMs were about 28.4% higher than those without the use of PCMs. The total energy saving using two PCMs was higher by about 29.5% and 46.7% compared with the use of PCM1 and PCM2, respectively. It can be concluded that multiple PCMs have revealed higher energy savings and thermal stability for the air heating system considered in the current study.


Proceedings ◽  
2020 ◽  
Vol 63 (1) ◽  
pp. 41
Author(s):  
Hanae El Fakiri ◽  
Lahoucine Ouhsaine ◽  
Abdelmajid El Bouardi

The thermal dynamic behavior of buildings represents an important aspect of the energy efficiency and thermal comfort of the indoor environment. For this, phase change material (PCM) wallboards integrated into building envelopes play an important role in stabilizing the temperature of the human comfort condition. This article provides an assessment of the thermal behavior of a “bi-zone” building cell, which was built based on high-energy performance (HEP) standards and heated by a solar water heater system through a hydronic circuit. The current study is based on studying the dynamic thermal behavior, with and without implantation of PCMs on envelope structure, using a simplified modeling approach. The evolution of the average air temperature was first evaluated as a major indicator of thermal comfort. Then, an evaluation of the thermal behavior’s dynamic profile was carried out in this study, which allowed for the determination of the PCM rate anticipation in the thermal comfort of the building cell.


2021 ◽  
Vol 16 (1) ◽  
pp. 032-041
Author(s):  
Pradeep N ◽  
Somesh Subramanian S

Thermal energy storage through phase change material has been used for wide applications in the field of air conditioning and refrigeration. The specific use of this thermal storage has been for energy storage during low demand and release of this energy during peak loads with potential to provide energy savings due to this. The principle of latent heat storage using phase change materials (PCMs) can be incorporated into a thermal storage system suitable for using deep freezers. The evaporator is covered with another box which has storage capacity or passage through phase change material. The results revealed that the performance is increased from 3.2 to 3.5 by using PCM.


2021 ◽  
Author(s):  
Omar Siddiqui

The applicability of utilizing a variety of thermal mass including phase change materials with commonly used building materials is investigated through the use of simulations and physical testing. The thermal performance and occupant comfort potential of a novel solid-solid phase change material, known as Dal HSM, is compared and contrasted to commonly available forms of thermal mass. Detailed experimentation is conducted to successfully integrate Dal HSM with gypsum and concrete. The measurement of physical characteristics such as compressive strength and modulus of rupture is conducted to ensure that the PCM-composite compound retains the structural integrity to be utilized in a typical building. The use of thermal mass in the Toronto Net Zero house was found to contribute to energy savings of 10-15% when different types of thermal mass were used. The comfort level of the indoor occupants was also found to increase. The performance of Dal HSM was found to be comparable to a commercially available PCM known as Micronal in the heating mode. The cooling mode revealed that Dal HSM provided slightly lower energy savings when compared to Micronal due to a lower phase transition temperature and latent heat. The performance of physical test revealed a decrease in the compressive strength as the concentration of Dal HSM was increased in the PCM-gypsum specimens. Tests were also performed to analyze the impact of increasing the PCM concentration on the flexural strength of PCM-gypsum composite.


2014 ◽  
Vol 113 ◽  
pp. 990-1007 ◽  
Author(s):  
Fabrizio Ascione ◽  
Nicola Bianco ◽  
Rosa Francesca De Masi ◽  
Filippo de’ Rossi ◽  
Giuseppe Peter Vanoli

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
A. Váz Sá ◽  
R. M. S. F. Almeida ◽  
H. Sousa ◽  
J. M. P. Q. Delgado

Building components with incorporated phase change materials (PCMs) meant to increase heat storage capacity and enable stabilization of interior buildings surface temperatures, whereby influencing the thermal comfort sensation and the stabilization of the interior ambient temperatures. The potential of advanced simulation tools to evaluate and optimize the usage of PCM in the control of indoor temperature, allowing for an improvement in the comfort conditions and/or in the cooling energy demand, was explored. This paper presents a numerical and sensitivity analysis of the enthalpy and melting temperature effect on the inside building comfort sensation potential of the plastering PCM.


Sign in / Sign up

Export Citation Format

Share Document