Vinyl Polymer-based technologies towards the efficient delivery of chemotherapeutic drugs

Author(s):  
Patrícia Pereira ◽  
Arménio C. Serra ◽  
Jorge F.J. Coelho
Cancers ◽  
2021 ◽  
Vol 13 (17) ◽  
pp. 4435
Author(s):  
Hyosuk Kim ◽  
Hochung Jang ◽  
Haeun Cho ◽  
Jiwon Choi ◽  
Kwang Yeon Hwang ◽  
...  

Exosomes are a class of extracellular vesicles, with a size of about 100 nm, secreted by most cells and carrying various bioactive molecules such as nucleic acids, proteins, and lipids, and reflect the biological status of parent cells. Exosomes have natural advantages such as high biocompatibility and low immunogenicity for efficient delivery of therapeutic agents such as chemotherapeutic drugs, nucleic acids, and proteins. In this review, we introduce the latest explorations of exosome-based drug delivery systems for cancer therapy, with particular focus on the targeted delivery of various types of cargoes.


2021 ◽  
Author(s):  
Wenjuan Huang ◽  
Sijie Zhou ◽  
Bojiao Tang ◽  
Hongyan Xu ◽  
Xiaoxiao Wu ◽  
...  

2018 ◽  
Vol 24 (1) ◽  
pp. 62-77 ◽  
Author(s):  
Sayed Sartaj Sohrab ◽  
Sherif Aly El-Kafrawy ◽  
Zeenat Mirza ◽  
Mohammad Amjad Kamal ◽  
Esam Ibraheem Azhar

Background: The MERS-CoV is a novel human coronavirus causing respiratory syndrome since April 2012. The replication of MERS-CoV is mediated by ORF 1ab and viral gene activity can be modulated by RNAi approach. The inhibition of virus replication has been documented in cell culture against multiple viruses by RNAi approach. Currently, very few siRNA against MERS-CoV have been computationally designed and published. Methods: In this review, we have discussed the computational designing and delivery of potential siRNAs. Potential siRNA can be designed to silence a desired gene by considering many factors like target site, specificity, length and nucleotide content of siRNA, removal of potential off-target sites, toxicity and immunogenic responses. The efficient delivery of siRNAs into targeted cells faces many challenges like enzymatic degradation and quick clearance through renal system. The siRNA can be delivered using transfection, electroporation and viral gene transfer. Currently, siRNAs delivery has been improved by using advanced nanotechnology like lipid nanoparticles, inorganic nanoparticles and polymeric nanoparticles. Conclusion: The efficacy of siRNA-based therapeutics has been used not only against many viral diseases but also against non-viral diseases, cancer, dominant genetic disorders, and autoimmune disease. This innovative technology has attracted researchers, academia and pharmaceuticals industries towards designing and development of highly effective and targeted disease therapy. By using this technology, effective and potential siRNAs can be designed, delivered and their efficacy with toxic effects and immunogenic responses can be tested against MERS-CoV.


2018 ◽  
Vol 24 (15) ◽  
pp. 1639-1651 ◽  
Author(s):  
Xian-ling Qian ◽  
Jun Li ◽  
Ran Wei ◽  
Hui Lin ◽  
Li-xia Xiong

Background: Anticancer chemotherapeutics have a lot of problems via conventional Drug Delivery Systems (DDSs), including non-specificity, burst release, severe side-effects, and damage to normal cells. Owing to its potential to circumventing these problems, nanotechnology has gained increasing attention in targeted tumor therapy. Chemotherapeutic drugs or genes encapsulated in nanoparticles could be used to target therapies to the tumor site in three ways: “passive”, “active”, and “smart” targeting. Objective: To summarize the mechanisms of various internal and external “smart” stimulating factors on the basis of findings from in vivo and in vitro studies. Method: A thorough search of PubMed was conducted in order to identify the majority of trials, studies and novel articles related to the subject. Results: Activated by internal triggering factors (pH, redox, enzyme, hypoxia, etc.) or external triggering factors (temperature, light of different wavelengths, ultrasound, magnetic fields, etc.), “smart” DDSs exhibit targeted delivery to the tumor site, and controlled release of chemotherapeutic drugs or genes. Conclusion: In this review article, we summarize and classify the internal and external triggering mechanism of “smart” nanoparticle-based DDSs in targeted tumor therapy, and the most recent research advances are illustrated for better understanding.


2002 ◽  
Vol 3 (4) ◽  
pp. 297-309 ◽  
Author(s):  
Randal Berg ◽  
Peter Ferguson ◽  
Janice DeMoor ◽  
Mark Vincent ◽  
James Koropatnick

2019 ◽  
Vol 19 (27) ◽  
pp. 2494-2506 ◽  
Author(s):  
Congcong Zhu ◽  
Yunjie Zhu ◽  
Huijun Pan ◽  
Zhongjian Chen ◽  
Quangang Zhu

Melanoma is a malignant skin tumor that results in poor disease prognosis due to unsuccessful treatment options. During the early stages of tumor progression, surgery is the primary approach that assures a good outcome. However, in the presence of metastasis, melanoma hasbecome almost immedicable, since the tumors can not be removed and the disease recurs easily in a short period of time. However, in recent years, the combination of nanomedicine and chemotherapeutic drugs has offered promising solutions to the treatment of late-stage melanoma. Extensive studies have demonstrated that nanomaterials and their advanced applications can improve the efficacy of traditional chemotherapeutic drugs in order to overcome the disadvantages, such as drug resistance, low drug delivery rate and reduced targeting to the tumor tissue. In the present review, we summarized the latest progress in imaging diagnosis and treatment of melanoma using functional nanomaterials, including polymers, liposomes, metal nanoparticles, magnetic nanoparticles and carbon-based nanoparticles. These nanoparticles are reported widely in melanoma chemotherapy, gene therapy, immunotherapy, photodynamic therapy, and hyperthermia.


2020 ◽  
Vol 16 ◽  
Author(s):  
Mohamad Zahid Kasiram ◽  
Hermizi Hapidin ◽  
Hasmah Abdullah ◽  
Azlina Ahmad ◽  
Sarina Sulong

Background: Osteosarcoma is the most common type of primary bone tumor in children and adolescents, which is associated with rapid progression and poor prognosis. Multimodal therapy is the most common approach utilized for osteosarcoma management, such as the application of chemotherapy in combination with surgery or radiation therapy. Cisplatin is one of the predominantly used chemotherapeutic agents for osteosarcoma. Optimally, it is employed in combination with other chemotherapeutic drugs along with surgery or radiation therapy. Despite the availability of numerous treatment approaches, patient survival rate has not definitively improved over the past three decades. Methods: We summarized all findings regarding the combination of cisplatin with other chemotherapeutic agents as well as with phytochemical compounds. Results: A combination of cisplatin with phytochemical compound synergistically enhances the killing effect of cisplatin on osteosarcoma cells with fewer side effects compared to combination with other chemotherapeutic agents. Conclusion: Conclusively, a combination of cisplatin with selected chemotherapeutic drugs, has been shown to be effective. However, the unchanged survival rate urges for the search of a new combination regimen. As a collaborative effort to substantiate the therapeutic efficacy, the combination with phytochemical compounds shows a promising response both in vitro as well as in the preclinical study.


2020 ◽  
Vol 16 (4) ◽  
pp. 260-268
Author(s):  
Tanmay Upadhyay ◽  
Vaseem A. Ansari ◽  
Usama Ahmad ◽  
Nazneen Sultana ◽  
Juber Akhtar

Cancer is a leading cause of mortality worldwide, accounting for 8.8 million deaths in 2015. Among these, at least 0.78 million people died of liver cancer alone. The recognized risk factors for liver cancer include chronic hepatitis B virus (HBV) and hepatitis C virus (HCV) infection, exposure to dietary aflatoxin, fatty liver disease, alcohol-induced cirrhosis, obesity, smoking, diabetes, and iron overload. The treatment plan for early diagnosed patients includes radiation therapy, tumour ablation, surgery, immunotherapy, and chemotherapy. Some sort of drug delivery vehicles has to be used when the treatment plan is targeted chemotherapy. Nanoemulsions are a class of biphasic liquid dosage form which are mixtures of oil and water stabilized by a surfactant. They are either transparent or bluish in hue and serve as a wonderful carrier system for chemotherapeutic drugs. These vehicles have a particle size in the range of 20-200 nm allowing them to be delivered successfully in the deepest of tissues. Recent publications on nanoemulsions reveal their acceptance and a popular choice for delivering both synthetic and herbal drugs to the liver. This work focuses on some anti-cancer agents that utilized the advantages of nanoemulsion for liver cancer therapy.


Sign in / Sign up

Export Citation Format

Share Document