Long noncoding RNA LMO7DN inhibits cell proliferation by regulating the cell cycle in lung adenocarcinoma

2021 ◽  
pp. 153475
Author(s):  
Lizhong Zeng ◽  
Yang Chen ◽  
Jingyan Yuan ◽  
Xin Lyu ◽  
LeiZhang ◽  
...  
2014 ◽  
Vol 24 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Jiaming Huang ◽  
Peiqi Ke ◽  
Luyan Guo ◽  
Wei Wang ◽  
Hao Tan ◽  
...  

ObjectiveThe overexpression of long noncoding RNA HOTAIR is associated with various aggressive solid carcinomas. However, its relationship with endometrial carcinoma has not been reported. The present study aimed to investigate the expression of the long noncoding RNA HOTAIR in endometrial carcinoma, its relationship with the carcinoma’s clinicopathologic features, and the biological function of HOTAIR in regulating endometrial cancer cell proliferation and invasion in vitro and in vivo.MethodsThe expression of HOTAIR was detected in different tissues and cell lines by real-time PCR. Lentivirus-mediated HOTAIR-specific shRNAvectors were transfected into endometrial cancer HEC-1A cells. Cell proliferation and colony formation were examined by CCK-8 assays and colony formation assays, respectively. Invasion and migration were examined by Transwell assays. Flow cytometry assay was used to examine the cell cycle. In addition, xenograft model assays were performed to analyze the growth of endometrial cancer cells in vivo.ResultsOur data showed that HOTAIR expression was higher in endometrial cancer cells and tissues than in normal endometrial tissues. HOTAIR expression was closely related to the tumor stage (P= 0.045), myometrial invasion (P= 0.014), and lymph node metastasis (P= 0.033). The down-regulation of HOTAIR resulted in a significant inhibition of cell proliferation, migration, and invasion and in cell cycle arrest at the G0/G1 phase. Furthermore, HOTAIR depletion significantly suppressed the endometrial cancer tumorigenesis in vivo.ConclusionsThis study is the first to suggest that HOTAIR plays an important role in the carcinogenesis of endometrial cancer. Targeting HOTAIR may be a novel therapeutic strategy for endometrial cancer.


2019 ◽  
Vol 11 ◽  
pp. 175883591987464 ◽  
Author(s):  
Hongye Jiang ◽  
Yong Li ◽  
Jie Li ◽  
Xuyu Zhang ◽  
Gang Niu ◽  
...  

Background: A review of the evidence has indicated the critical role of long noncoding RNA (lncRNA) LSINCT5 in a large number of human cancers. However, the mechanistic involvement of LSINCT5 in endometrial carcinoma (EC) is still unknown. Here the authors aim to characterize the expression status of LSINCT5 and elucidate its mechanistic relevance to EC. Methods: Relative expression of LSINCT5 and HMGA2 were quantified by a real-time polymerase chain reaction. SiRNAs were employed to specifically knockdown endogenous LSINCT5 in EC cells. Cell proliferation was measured with Cell Count Kit-8 kit (CCK-8, Dojindo, Kumamoto, Japan) and cell growth was assessed by a colony formation assay. The cell cycle was analyzed with propidium iodide (PI) staining. Apoptotic cells were determined by flow cytometry after Annexin V/PI double-staining. Cell migration was evaluated by a wound-healing assay, and cell invasion was assessed using a transwell migration assay. The protein levels of HMGA2, Wnt3a, p-β-catenin, c-myc, β-actin, and GAPDH were determined by western blot. Results: The authors observed positively correlated and aberrantly up-regulated LSINCT5 and HMGA2 in EC. LSINCT5 deficiency significantly inhibited cell proliferation, cell cycle progression, and induced apoptosis. Meanwhile, cell migration and invasion were greatly compromised by the LSINCT5 knockdown. LSINCT5 stabilized HMGA2, which subsequently stimulated activation of Wnt/β-catenin signaling and consequently contributed to the oncogenic properties of LSINCT5 in EC. Conclusions: Our data uncovered the oncogenic activities and highlighted the mechanistic contributions of the LSINCT5-HMGA2-Wnt/β-catenin signaling pathway in EC.


2020 ◽  
Vol 16 (25) ◽  
pp. 1911-1920
Author(s):  
Feifei Chu ◽  
Yuanbo Cui ◽  
Kunkun Li ◽  
Xingguo Xiao ◽  
Li Zhang ◽  
...  

Aim: Colorectal cancer (CRC) is one of the leading causes of cancer-related deaths worldwide. This study aimed to investigate the role of long noncoding RNA THOR in CRC. Materials & methods: The expression of THOR in 103 cases of CRC tissues and four CRC cell lines was examined by quantitative real-time PCR. Cell counting kit-8 and colony formation assays were applied to detect cell proliferation, and flow cytometry was used for testing cell cycle and apoptosis of CRC. Results: We found that THOR was highly expressed in CRC and correlated with tumor node metastasis stage, histological subtype, tumor size and differentiation and survival in CRC patients. Meanwhile, knockdown of THOR significantly suppressed cell proliferation and cell cycle of CRC, whereas promoted cell apoptosis. Conclusion: Our findings suggest that THOR is an oncogenic long noncoding RNA in CRC and a potential prognostic biomarker for this cancer.


PLoS ONE ◽  
2016 ◽  
Vol 11 (3) ◽  
pp. e0150790 ◽  
Author(s):  
Ping Li ◽  
Guojun Zhang ◽  
Juan Li ◽  
Rui Yang ◽  
Shanshan Chen ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiang Liu ◽  
Chengtong Zhai ◽  
Degan Liu ◽  
Jianhua Liu

Objective. To investigate the expression of long noncoding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) in hepatocellular carcinoma tissues and its effect on cell proliferation, migration, and invasion. Methods. Quantitative real-time PCR was used to analyze the expression of LOXL1-AS1 RNA in tumor tissues, adjacent normal tissues, and cell lines. MTT assay, colony formation assay, flow cytometry analysis, transwell assays, and lentivirus-mediated RNA interference (RNAi) technology were used to evaluate cell proliferation and migration. Results. In the present study, we observed that the expression level of LOXL1-AS1 in hepatocellular carcinoma tissue was significantly higher than that in adjacent nontumor tissues, and its expression in three hepatic carcinoma cell lines was obviously higher than that in a normal cell line. In addition, in the Hep-G2 cell line, LOXL1-AS1 downregulation significantly inhibited cell proliferation in the light of the MTT and colony formation assays in vitro, which was consistent with animal experiment in vivo. What is more, cell migration was also inhibited in vitro in Matrigel Transwell Assay by LOXL1-AS1 knockdown, which might be partly attributed to the reduction of MMP-2 and MMP-9 protein expressions. Finally, cell cycle analysis revealed that knockdown of LOXL1-AS1 induced significantly a G0/G1 phase cell cycle arrest, which might be partly attributed to the downregulation of Cdc2, Cdc25A, and cyclin B1 protein expression. Conclusion. In conclusion, we demonstrated that reduced LOXL1-AS1 expression could inhibit hepatocellular carcinoma cell proliferation, migration, and invasion. The application of RNAi targeting LOXL1-AS1 might be a potential treatment strategy in advanced cases.


Author(s):  
Shengzhuang Yang ◽  
Tao Liu ◽  
Yu Sun ◽  
Xiangsen Liang

Abstract Background The expression of the long noncoding RNA LINC00483 is upregulated in lung adenocarcinoma (LUAD). However, its role in the progression of LUAD and the underlying mechanisms remain elusive. Methods The expressions of LINC00483 and miR-204-3p were determined using quantitative real-time PCR. The correlation between the clinicopathological characteristics of LUAD patients and LINC00483 expression was analyzed using Pearson’s χ2 test. A549 and PC-9 cells were transfected with small interfering RNA (siRNA) that specially targeting LINC00483 to assess the impact of its knockdown. Cell proliferation was assessed using the Cell Counting Kit-8 and clone forming assays. Cell migration and cell invasion were evaluated using a transwell assay. The levels of Snail, E-cadherin, N-cadherin and ETS1 proteins were determined via western blotting. The interaction between LINC00483 and miR-204-3p was analyzed using dual-luciferase, fluorescence in situ hybridization and RNA immunoprecipitation. Results LINC00483 was upregulated in LUAD tissues and cell lines. Higher LINC00483 levels closely correlated to shorter survival times, advanced TNM stage, larger tumor size and positive lymph node metastasis. Cell proliferation, migration and invasion were suppressed after LINC00483 knockdown. LINC00483 mainly localized in the cytoplasm, where it acted as a sponge of miR-204-3p. ETS1 was validated as a downstream target of miR-204-3p and is thus regulated by LINC00483. Conclusion This study demonstrated that LINC00483 facilitates the proliferation, migration and invasion of LUAD cells by acting as a sponge for miR-204-3p, which in turn regulates ETS1.


2019 ◽  
Vol 40 (3) ◽  
Author(s):  
Ji-Fu Zheng ◽  
Ning-Hong Guo ◽  
Fu-Ming Zi ◽  
Jing Cheng

ABSTRACT Multiple myeloma (MM) accounts for over twenty percent of hematological cancer-related death worldwide. Long noncoding RNA (lncRNA) H19 is associated with multiple tumorigenesis and is increased in MM, but the underlying mechanism of H19 in MM is unclear. In this study, the expression of H19, microRNA 152-3p (miR-152-3p), and BRD4 in MM patients was evaluated by quantitative real-time PCR (qRT-PCR) and Western blotting. Colony formation and flow cytometry analysis were used to determine the effects of H19 and miR-152-3p on MM cell proliferation, apoptosis, and cell cycle. A luciferase reporter assay was conducted to confirm the interaction among H19, miR-152-3p, and BRD4. A nude mouse xenograft model was established, and the cell proliferation and apoptosis were evaluated by immunohistochemistry (IHC) staining and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling assay. We found that levels of H19 and BRD4 were upregulated and the expression of miR-152-3p was downregulated in MM patients. Dual luciferase reporter assay showed H19 targeted miR-152-3p to promote BRD4 expression. Knockdown of H19 repressed proliferation and enhanced apoptosis and cell cycle G1 arrest by upregulating miR-152-3p in MM cells. Furthermore, H19 knockdown suppressed the growth of xenograft tumor, reduced Ki-67 and BRD4 levels, and increased cell apoptosis in xenograft tumor tissues. Taking these results together, H19 knockdown suppresses MM tumorigenesis via inhibiting BRD4-mediated cell proliferation through targeting miR-152-3p, implying that H19 is a promising biomarker and drug target for MM.


Sign in / Sign up

Export Citation Format

Share Document