scholarly journals The Long Noncoding RNA LOXL1-AS1 Promotes the Proliferation, Migration, and Invasion in Hepatocellular Carcinoma

2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Jiang Liu ◽  
Chengtong Zhai ◽  
Degan Liu ◽  
Jianhua Liu

Objective. To investigate the expression of long noncoding RNA lysyl oxidase-like 1-antisense 1 (LOXL1-AS1) in hepatocellular carcinoma tissues and its effect on cell proliferation, migration, and invasion. Methods. Quantitative real-time PCR was used to analyze the expression of LOXL1-AS1 RNA in tumor tissues, adjacent normal tissues, and cell lines. MTT assay, colony formation assay, flow cytometry analysis, transwell assays, and lentivirus-mediated RNA interference (RNAi) technology were used to evaluate cell proliferation and migration. Results. In the present study, we observed that the expression level of LOXL1-AS1 in hepatocellular carcinoma tissue was significantly higher than that in adjacent nontumor tissues, and its expression in three hepatic carcinoma cell lines was obviously higher than that in a normal cell line. In addition, in the Hep-G2 cell line, LOXL1-AS1 downregulation significantly inhibited cell proliferation in the light of the MTT and colony formation assays in vitro, which was consistent with animal experiment in vivo. What is more, cell migration was also inhibited in vitro in Matrigel Transwell Assay by LOXL1-AS1 knockdown, which might be partly attributed to the reduction of MMP-2 and MMP-9 protein expressions. Finally, cell cycle analysis revealed that knockdown of LOXL1-AS1 induced significantly a G0/G1 phase cell cycle arrest, which might be partly attributed to the downregulation of Cdc2, Cdc25A, and cyclin B1 protein expression. Conclusion. In conclusion, we demonstrated that reduced LOXL1-AS1 expression could inhibit hepatocellular carcinoma cell proliferation, migration, and invasion. The application of RNAi targeting LOXL1-AS1 might be a potential treatment strategy in advanced cases.

2014 ◽  
Vol 24 (4) ◽  
pp. 635-642 ◽  
Author(s):  
Jiaming Huang ◽  
Peiqi Ke ◽  
Luyan Guo ◽  
Wei Wang ◽  
Hao Tan ◽  
...  

ObjectiveThe overexpression of long noncoding RNA HOTAIR is associated with various aggressive solid carcinomas. However, its relationship with endometrial carcinoma has not been reported. The present study aimed to investigate the expression of the long noncoding RNA HOTAIR in endometrial carcinoma, its relationship with the carcinoma’s clinicopathologic features, and the biological function of HOTAIR in regulating endometrial cancer cell proliferation and invasion in vitro and in vivo.MethodsThe expression of HOTAIR was detected in different tissues and cell lines by real-time PCR. Lentivirus-mediated HOTAIR-specific shRNAvectors were transfected into endometrial cancer HEC-1A cells. Cell proliferation and colony formation were examined by CCK-8 assays and colony formation assays, respectively. Invasion and migration were examined by Transwell assays. Flow cytometry assay was used to examine the cell cycle. In addition, xenograft model assays were performed to analyze the growth of endometrial cancer cells in vivo.ResultsOur data showed that HOTAIR expression was higher in endometrial cancer cells and tissues than in normal endometrial tissues. HOTAIR expression was closely related to the tumor stage (P= 0.045), myometrial invasion (P= 0.014), and lymph node metastasis (P= 0.033). The down-regulation of HOTAIR resulted in a significant inhibition of cell proliferation, migration, and invasion and in cell cycle arrest at the G0/G1 phase. Furthermore, HOTAIR depletion significantly suppressed the endometrial cancer tumorigenesis in vivo.ConclusionsThis study is the first to suggest that HOTAIR plays an important role in the carcinogenesis of endometrial cancer. Targeting HOTAIR may be a novel therapeutic strategy for endometrial cancer.


2019 ◽  
Vol 11 ◽  
pp. 175883591987464 ◽  
Author(s):  
Hongye Jiang ◽  
Yong Li ◽  
Jie Li ◽  
Xuyu Zhang ◽  
Gang Niu ◽  
...  

Background: A review of the evidence has indicated the critical role of long noncoding RNA (lncRNA) LSINCT5 in a large number of human cancers. However, the mechanistic involvement of LSINCT5 in endometrial carcinoma (EC) is still unknown. Here the authors aim to characterize the expression status of LSINCT5 and elucidate its mechanistic relevance to EC. Methods: Relative expression of LSINCT5 and HMGA2 were quantified by a real-time polymerase chain reaction. SiRNAs were employed to specifically knockdown endogenous LSINCT5 in EC cells. Cell proliferation was measured with Cell Count Kit-8 kit (CCK-8, Dojindo, Kumamoto, Japan) and cell growth was assessed by a colony formation assay. The cell cycle was analyzed with propidium iodide (PI) staining. Apoptotic cells were determined by flow cytometry after Annexin V/PI double-staining. Cell migration was evaluated by a wound-healing assay, and cell invasion was assessed using a transwell migration assay. The protein levels of HMGA2, Wnt3a, p-β-catenin, c-myc, β-actin, and GAPDH were determined by western blot. Results: The authors observed positively correlated and aberrantly up-regulated LSINCT5 and HMGA2 in EC. LSINCT5 deficiency significantly inhibited cell proliferation, cell cycle progression, and induced apoptosis. Meanwhile, cell migration and invasion were greatly compromised by the LSINCT5 knockdown. LSINCT5 stabilized HMGA2, which subsequently stimulated activation of Wnt/β-catenin signaling and consequently contributed to the oncogenic properties of LSINCT5 in EC. Conclusions: Our data uncovered the oncogenic activities and highlighted the mechanistic contributions of the LSINCT5-HMGA2-Wnt/β-catenin signaling pathway in EC.


Chemotherapy ◽  
2019 ◽  
Vol 64 (3) ◽  
pp. 146-154 ◽  
Author(s):  
Jinghu He ◽  
Junjie Xing ◽  
Xiaohong Yang ◽  
Chenxin Zhang ◽  
Yixiang Zhang ◽  
...  

Objective: Colorectal cancer (CRC) remains a major cause of cancer-related death worldwide. Proteasome 26S subunit ATPase 2 (PSMC2) plays vital roles in regulating cell cycle and transcription and has been confirmed to be a gene potentially associated with some human tumors. However, the expression correlation and molecular mechanism of PSMC2 in CRC are still unclear. This study aimed to investigate the role of PSMC2 in malignant behaviors in CRC. Methods: The high protein levels of PSMC2 in CRC samples were identified by tissue microarray analysis. Lentivirus was used to silence PSMC2 in HCT116 and RKO cells; MTT and colony formation assay were performed to determine cell proliferation. Wound healing and Transwell assay were used to detect cell migration and invasion. Flow cytometry assay was applied to detect cell cycle and apoptosis. Result: The results showed that, among the 96 CRC patients, the expression of PSMC2 was a positive correlation with the clinicopathological features of the patients with CRC. Furthermore, the low PSMC2 expression group showed a higher survival rate than the high PSMC2 expression group. The expression levels of PSMC2 in cancer tissue were dramatically upregulated compared with adjacent normal tissues. In vitro, shPSMC2 was designed to inhibit the expression of PSMC2 in CRC cells. Compared with shCtrl, silencing of PSMC2 significantly suppressed cell proliferation, decreased single cell colony formation, enhanced apoptosis, and accelerated G2 phase and/or S phase arrest. Conclusion: Survival analysis indicated that high expression of PSMC2 in the CRC samples was associated with poorer survival rate than low expression of PSMC2, while the anti-tumor effect of PSMC2 silencing was also confirmed at the cellular level in vitro. Our results suggested that PSMC2 potentially worked as a regulator for CRC, and the silencing of PSMC2 may be a therapeutic strategy for CRC.


Author(s):  
Xiao-hui Sun ◽  
Wen-jie Fan ◽  
Zong-jian An ◽  
Yong Sun

Long noncoding RNA CRNDE (CRNDE) recently emerged as a carcinogenic promoter in various cancers including medulloblastoma. However, the functions and molecular mechanisms of CRNDE to the acquired drug resistance of medulloblastoma are still unclear. The transcript levels of CRNDE were examined in four medulloblastoma cell lines exposed to cisplatin treatment, and IC50 values were calculated. Effects of CRNDE knockdown or miR-29c-3p overexpression on cell viability, colony formation, apoptosis, migration, and invasion were assessed using the CCK-8, colony formation assay, flow cytometry, and Transwell assays, respectively. RNA pulldown and RNA-binding protein immunoprecipitation (RIP) were performed to confirm the molecular interactions between CRNDE and miR-29c-3p involved in medulloblastoma cells. The in vivo role of CRNDE knockdown or miR-29c-3p overexpression on tumor growth and apoptosis was evaluated in a xenograft mouse model of human medulloblastoma. The transcript levels of lncRNA CRNDE were significantly higher in cisplatin-treated tumor cells with higher IC50 values. Depletion of CRNDE inhibited tumor cell proliferation and colony formation, induced cell apoptosis, and suppressed migration and invasion in medulloblastoma cells. Moreover, overexpression of miR-29c-3p inhibited tumor cell proliferation and colony formation, migration, and invasion, and enhanced apoptosis and chemosensitivity to cisplatin. In addition, CRNDE was found to act as a miR-29c-3p sponge. Furthermore, in vivo experiments showed the CRNDE/miR-29c-3p interactions involved in medulloblastoma. Our study demonstrates that CRNDE acts as a critical mediator of proliferation, apoptosis, migration, invasion, and resistance to chemotherapeutics via binding to and negatively regulating miR-29c-3p in medulloblastoma cells. These results provide novel molecular targets for treatment of medulloblastoma.


2018 ◽  
Vol 38 (3) ◽  
Author(s):  
Fengqin Hao ◽  
Yanan Mou ◽  
Laixia Zhang ◽  
Shuna Wang ◽  
Yang Yang

The actin filament-associated protein 1 antisense RNA 1 (AFAP1-AS1) has been found to serve as an oncogenic long noncoding RNA (lncRNA) in most types of human cancer. The role of AFAP1-AS1 in retinoblastoma remains unknown. The purpose of the present study is to explore the clinical significance and biological function of AFAP1-AS1 in retinoblastoma. Levels of AFAP1-AS1 expression were measured in retinoblastoma tissues and cell lines. Loss-of-function study was performed to observe the effects of AFAP1-AS1 on retinoblastoma cell proliferation, cell cycle, migration, and invasion. In our results, AFAP1-AS1 expression was elevated in retinoblastoma tissues and cell lines, and associated with tumor size, choroidal invasion, and optic nerve invasion. Moreover, high expression of AFAP1-AS1 was an independent unfavorable prognostic factor in retinoblastoma patients. The experiment in vitro suggested down-regulation of AFAP1-AS1 inhibited retinoblastoma cell proliferation, migration and invasion, and blocked cell cycle. In conclusion, AFAP1-AS1 functions as an oncogenic lncRNA in retinoblastoma.


Sign in / Sign up

Export Citation Format

Share Document