scholarly journals Termination-II interstadial/stadial climate change recorded in two stalagmites from the north European Alps

2015 ◽  
Vol 127 ◽  
pp. 229-239 ◽  
Author(s):  
Gina E. Moseley ◽  
Christoph Spötl ◽  
Hai Cheng ◽  
Ronny Boch ◽  
Angela Min ◽  
...  
Author(s):  
Yuri Brugnara

The European Alps have experienced remarkable climate changes since the beginning of the Industrial Age. In particular, mean air temperature in the region increased at a greater rate than global temperature, leading to the loss of nearly half of the glaciated area and to important changes in the ecosystems. Spanning 1,200 km in length, with peaks reaching over 4,000 meters above sea level (m asl), the Alps have a critical influence over the weather in most of Europe and separate the colder oceanic/continental climate in the north from the milder Mediterranean climate in the south. The climatic differences between the main slopes are reflected into different climate changes—whereas the northern slope got wetter, the southern slope got drier. The consequences of these climate changes are not confined to the Alpine region. Being located in the center of Europe, the Alps provide water and electricity for over 100 million people. Alpine run-off is a major contributor to the total discharge of several major European rivers such as the Rhine, the Rhône, the Po, and the Danube. Therefore, climate change in the Alps can have significant economic impacts on a continental scale. Their convenient geographical position allowed scientists to study the Alpine climate since the very beginning of the instrumental era. The first instrumental meteorological observations in an Alpine valley were taken as early as the mid-17th century, soon followed by measurements at higher elevations. Continuous records are available since the late 18th century, providing invaluable information on climate variability to modern-day researchers. Although there is overwhelming evidence of a dominant anthropogenic influence on the observed temperature increase, the causes of the changes that affected other variables have, in many cases, not been sufficiently investigated by the scientific community.


2013 ◽  
Vol 28 (2) ◽  
pp. 189-199 ◽  
Author(s):  
B. Wilhelm ◽  
F. Arnaud ◽  
P. Sabatier ◽  
O. Magand ◽  
E. Chapron ◽  
...  

2014 ◽  
Vol 60 (2) ◽  
pp. 119-132 ◽  
Author(s):  
C Hartl-Meier ◽  
C Zang ◽  
C Dittmar ◽  
J Esper ◽  
A Göttlein ◽  
...  

2020 ◽  
Vol 2 (8) ◽  
pp. 101-110
Author(s):  
N. N. ILYSHEVA ◽  
◽  
E. V. KARANINA ◽  
G. P. LEDKOV ◽  
E. V. BALDESKU ◽  
...  

The article deals with the problem of achieving sustainable development. The purpose of this study is to reveal the relationship between the components of sustainable development, taking into account the involvement of indigenous peoples in nature conservation. Climate change makes achieving sustainable development more difficult. Indigenous peoples are the first to feel the effects of climate change and play an important role in the environmental monitoring of their places of residence. The natural environment is the basis of life for indigenous peoples, and biological resources are the main source of food security. In the future, the importance of bioresources will increase, which is why economic development cannot be considered independently. It is assumed that the components of resilience are interrelated and influence each other. To identify this relationship, a model for the correlation of sustainable development components was developed. The model is based on the methods of correlation analysis and allows to determine the tightness of the relationship between economic development and its ecological footprint in the face of climate change. The correlation model was tested on the statistical materials of state reports on the environmental situation in the Khanty-Mansiysk Autonomous Okrug – Yugra. The approbation revealed a strong positive relationship between two components of sustainable development of the region: economy and ecology.


2020 ◽  
Vol 20 (1) ◽  
pp. 10-42
Author(s):  
Flora Mary Bartlett

I examine how tensions between locals, environmentalists, and State politicians in a small town in northern Sweden are reinforced through national discourses of climate change and sustainability. Turbulence emerges across different scales of responsibility and environmental engagement in Arjeplog as politicians are seen by local inhabitants to be engaging more with the global conversation than with the local experience of living in the north. Moreover, many people view the environmentalist discourses from the politicians in the south, whom they deem to be out of touch with rural life, as threatening to the local experience of nature. These discourses pose a threat to their reliance on petrol, essential for travel, and are experienced locally as a continuation of the south’s historical interference in the region. Based on thirteen months of field research, I argue that mistrust of the various messengers of climate change, including politicians and environmentalists, is a crucial part of the scepticism towards the climate change discourse and that we as researchers need to utilise the strengths of anthropology in examining the reception (or refusal) of climate change. The locals’ mistrust of environment discourses had implications for my positionality, as I was associated with these perceived ‘outsider’ sensibilities. While the anthropology of climate change often focusses on physical impacts and resilience, I argue that we need to pay due attention to the local turbulence surrounding the discourses of climate change, which exist alongside the physical phenomena.  


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 866
Author(s):  
Gary Free ◽  
Mariano Bresciani ◽  
Monica Pinardi ◽  
Nicola Ghirardi ◽  
Giulia Luciani ◽  
...  

Climate change has increased the temperature and altered the mixing regime of high-value lakes in the subalpine region of Northern Italy. Remote sensing of chlorophyll-a can help provide a time series to allow an assessment of the ecological implications of this. Non-parametric multiplicative regression (NPMR) was used to visualize and understand the changes that have occurred between 2003–2018 in Lakes Garda, Como, Iseo, and Maggiore. In all four deep subalpine lakes, there has been a disruption from a traditional pattern of a significant spring chlorophyll-a peak followed by a clear water phase and summer/autumn peaks. This was replaced after 2010–2012, with lower spring peaks and a tendency for annual maxima to occur in summer. There was a tendency for this switch to be interspersed by a two-year period of low chlorophyll-a. Variables that were significant in NPMR included time, air temperature, total phosphorus, winter temperature, and winter values for the North Atlantic Oscillation. The change from spring to summer chlorophyll-a maxima, relatively sudden in an ecological context, could be interpreted as a regime shift. The cause was probably cascading effects from increased winter temperatures, reduced winter mixing, and altered nutrient dynamics. Future trends will depend on climate change and inter-decadal climate drivers.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


Author(s):  
Balasubramani Karuppusamy ◽  
Devojit Kumar Sarma ◽  
Pachuau Lalmalsawma ◽  
Lalfakzuala Pautu ◽  
Krishanpal Karmodiya ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document