Turbulent Climate Discourses in Northern Sweden

2020 ◽  
Vol 20 (1) ◽  
pp. 10-42
Author(s):  
Flora Mary Bartlett

I examine how tensions between locals, environmentalists, and State politicians in a small town in northern Sweden are reinforced through national discourses of climate change and sustainability. Turbulence emerges across different scales of responsibility and environmental engagement in Arjeplog as politicians are seen by local inhabitants to be engaging more with the global conversation than with the local experience of living in the north. Moreover, many people view the environmentalist discourses from the politicians in the south, whom they deem to be out of touch with rural life, as threatening to the local experience of nature. These discourses pose a threat to their reliance on petrol, essential for travel, and are experienced locally as a continuation of the south’s historical interference in the region. Based on thirteen months of field research, I argue that mistrust of the various messengers of climate change, including politicians and environmentalists, is a crucial part of the scepticism towards the climate change discourse and that we as researchers need to utilise the strengths of anthropology in examining the reception (or refusal) of climate change. The locals’ mistrust of environment discourses had implications for my positionality, as I was associated with these perceived ‘outsider’ sensibilities. While the anthropology of climate change often focusses on physical impacts and resilience, I argue that we need to pay due attention to the local turbulence surrounding the discourses of climate change, which exist alongside the physical phenomena.  

2020 ◽  
Vol 2 (8) ◽  
pp. 101-110
Author(s):  
N. N. ILYSHEVA ◽  
◽  
E. V. KARANINA ◽  
G. P. LEDKOV ◽  
E. V. BALDESKU ◽  
...  

The article deals with the problem of achieving sustainable development. The purpose of this study is to reveal the relationship between the components of sustainable development, taking into account the involvement of indigenous peoples in nature conservation. Climate change makes achieving sustainable development more difficult. Indigenous peoples are the first to feel the effects of climate change and play an important role in the environmental monitoring of their places of residence. The natural environment is the basis of life for indigenous peoples, and biological resources are the main source of food security. In the future, the importance of bioresources will increase, which is why economic development cannot be considered independently. It is assumed that the components of resilience are interrelated and influence each other. To identify this relationship, a model for the correlation of sustainable development components was developed. The model is based on the methods of correlation analysis and allows to determine the tightness of the relationship between economic development and its ecological footprint in the face of climate change. The correlation model was tested on the statistical materials of state reports on the environmental situation in the Khanty-Mansiysk Autonomous Okrug – Yugra. The approbation revealed a strong positive relationship between two components of sustainable development of the region: economy and ecology.


2021 ◽  
Author(s):  
Alba de la Vara ◽  
William Cabos ◽  
Dmitry V. Sein ◽  
Claas Teichmann ◽  
Daniela Jacob

AbstractIn this work we use a regional atmosphere–ocean coupled model (RAOCM) and its stand-alone atmospheric component to gain insight into the impact of atmosphere–ocean coupling on the climate change signal over the Iberian Peninsula (IP). The IP climate is influenced by both the Atlantic Ocean and the Mediterranean sea. Complex interactions with the orography take place there and high-resolution models are required to realistically reproduce its current and future climate. We find that under the RCP8.5 scenario, the generalized 2-m air temperature (T2M) increase by the end of the twenty-first century (2070–2099) in the atmospheric-only simulation is tempered by the coupling. The impact of coupling is specially seen in summer, when the warming is stronger. Precipitation shows regionally-dependent changes in winter, whilst a drier climate is found in summer. The coupling generally reduces the magnitude of the changes. Differences in T2M and precipitation between the coupled and uncoupled simulations are caused by changes in the Atlantic large-scale circulation and in the Mediterranean Sea. Additionally, the differences in projected changes of T2M and precipitation with the RAOCM under the RCP8.5 and RCP4.5 scenarios are tackled. Results show that in winter and summer T2M increases less and precipitation changes are of a smaller magnitude with the RCP4.5. Whilst in summer changes present a similar regional distribution in both runs, in winter there are some differences in the NW of the IP due to differences in the North Atlantic circulation. The differences in the climate change signal from the RAOCM and the driving Global Coupled Model show that regionalization has an effect in terms of higher resolution over the land and ocean.


Water ◽  
2021 ◽  
Vol 13 (6) ◽  
pp. 866
Author(s):  
Gary Free ◽  
Mariano Bresciani ◽  
Monica Pinardi ◽  
Nicola Ghirardi ◽  
Giulia Luciani ◽  
...  

Climate change has increased the temperature and altered the mixing regime of high-value lakes in the subalpine region of Northern Italy. Remote sensing of chlorophyll-a can help provide a time series to allow an assessment of the ecological implications of this. Non-parametric multiplicative regression (NPMR) was used to visualize and understand the changes that have occurred between 2003–2018 in Lakes Garda, Como, Iseo, and Maggiore. In all four deep subalpine lakes, there has been a disruption from a traditional pattern of a significant spring chlorophyll-a peak followed by a clear water phase and summer/autumn peaks. This was replaced after 2010–2012, with lower spring peaks and a tendency for annual maxima to occur in summer. There was a tendency for this switch to be interspersed by a two-year period of low chlorophyll-a. Variables that were significant in NPMR included time, air temperature, total phosphorus, winter temperature, and winter values for the North Atlantic Oscillation. The change from spring to summer chlorophyll-a maxima, relatively sudden in an ecological context, could be interpreted as a regime shift. The cause was probably cascading effects from increased winter temperatures, reduced winter mixing, and altered nutrient dynamics. Future trends will depend on climate change and inter-decadal climate drivers.


Atmosphere ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 172
Author(s):  
Yuan Xu ◽  
Jieming Chou ◽  
Fan Yang ◽  
Mingyang Sun ◽  
Weixing Zhao ◽  
...  

Quantitatively assessing the spatial divergence of the sensitivity of crop yield to climate change is of great significance for reducing the climate change risk to food production. We use socio-economic and climatic data from 1981 to 2015 to examine how climate variability led to variation in yield, as simulated by an economy–climate model (C-D-C). The sensitivity of crop yield to the impact of climate change refers to the change in yield caused by changing climatic factors under the condition of constant non-climatic factors. An ‘output elasticity of comprehensive climate factor (CCF)’ approach determines the sensitivity, using the yields per hectare for grain, rice, wheat and maize in China’s main grain-producing areas as a case study. The results show that the CCF has a negative trend at a rate of −0.84/(10a) in the North region, while a positive trend of 0.79/(10a) is observed for the South region. Climate change promotes the ensemble increase in yields, and the contribution of agricultural labor force and total mechanical power to yields are greater, indicating that the yield in major grain-producing areas mainly depends on labor resources and the level of mechanization. However, the sensitivities to climate change of different crop yields to climate change present obvious regional differences: the sensitivity to climate change of the yield per hectare for maize in the North region was stronger than that in the South region. Therefore, the increase in the yield per hectare for maize in the North region due to the positive impacts of climate change was greater than that in the South region. In contrast, the sensitivity to climate change of the yield per hectare for rice in the South region was stronger than that in the North region. Furthermore, the sensitivity to climate change of maize per hectare yield was stronger than that of rice and wheat in the North region, and that of rice was the highest of the three crop yields in the South region. Finally, the economy–climate sensitivity zones of different crops were determined by the output elasticity of the CCF to help adapt to climate change and prevent food production risks.


Author(s):  
Balasubramani Karuppusamy ◽  
Devojit Kumar Sarma ◽  
Pachuau Lalmalsawma ◽  
Lalfakzuala Pautu ◽  
Krishanpal Karmodiya ◽  
...  

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sofia Ribeiro ◽  
Audrey Limoges ◽  
Guillaume Massé ◽  
Kasper L. Johansen ◽  
William Colgan ◽  
...  

AbstractHigh Arctic ecosystems and Indigenous livelihoods are tightly linked and exposed to climate change, yet assessing their sensitivity requires a long-term perspective. Here, we assess the vulnerability of the North Water polynya, a unique seaice ecosystem that sustains the world’s northernmost Inuit communities and several keystone Arctic species. We reconstruct mid-to-late Holocene changes in sea ice, marine primary production, and little auk colony dynamics through multi-proxy analysis of marine and lake sediment cores. Our results suggest a productive ecosystem by 4400–4200 cal yrs b2k coincident with the arrival of the first humans in Greenland. Climate forcing during the late Holocene, leading to periods of polynya instability and marine productivity decline, is strikingly coeval with the human abandonment of Greenland from c. 2200–1200 cal yrs b2k. Our long-term perspective highlights the future decline of the North Water ecosystem, due to climate warming and changing sea-ice conditions, as an important climate change risk.


Water ◽  
2020 ◽  
Vol 12 (4) ◽  
pp. 1135
Author(s):  
Carolyn Payus ◽  
Lim Ann Huey ◽  
Farrah Adnan ◽  
Andi Besse Rimba ◽  
Geetha Mohan ◽  
...  

For countries in Southeast Asia that mainly rely on surface water as their water resource, changes in weather patterns and hydrological systems due to climate change will cause severely decreased water resource availability. Warm weather triggers more water use and exacerbates the extraction of water resources, which will change the operation patterns of water usage and increase demand, resulting in water scarcity. The occurrence of prolonged drought upsets the balance between water supply and demand, significantly increasing the vulnerability of regions to damaging impacts. The objectives of this study are to identify trends and determine the impacts of extreme drought events on water levels for the major important water dams in the northern part of Borneo, and to assess the risk of water insecurity for the dams. In this context, remote sensing images are used to determine the degree of risk of water insecurity in the regions. Statistical methods are used in the analysis of daily water levels and rainfall data. The findings show that water levels in dams on the North and Northeast Coasts of Borneo are greatly affected by the extreme drought climate caused by the Northeast Monsoon, with mild to the high risk recorded in terms of water insecurity, with only two of the water dams being water-secure. This study shows how climate change has affected water availability throughout the regions.


2020 ◽  
Vol 12 (24) ◽  
pp. 10420
Author(s):  
Ioannis Chatziioannou ◽  
Efthimios Bakogiannis ◽  
Charalampos Kyriakidis ◽  
Luis Alvarez-Icaza

One of the biggest challenges of our time is climate change. Every day, at different places of the world, the planet sends alarming messages about the enormous transformations it is experiencing due to human-based activities. The latter are responsible for changing weather patterns that threaten food production, energy production and energy consumption, the desertification of land, the displacement of people and animals because of food and water shortages due to the reductions in rainfall, natural disasters and rising sea levels. The effects of climate change affect us all, and if drastic measures are not considered in a timely manner, it will be more difficult and costly to adapt to the aforementioned effects in the future. Considering this context, the aim of this work is to implement a prospective study/structural analysis to the identified sectors of a regional plan of adaptation to climate change so as to promote the resilience of the region against the negative phenomena generated by the climate crisis. This was achieved in two steps: first, we identified the relationships between the strategic sectors of the plan and organized them in order of importance. Second, we assessed the effectiveness of several public policies oriented towards a city’s resilience according to their impact upon the strategic sectors of the plan and the co-benefits generated by their implementation for society. The results highlight that the most essential sectors for the mitigation of climate change are flood risk management, built environment, forest ecosystem management, human health, tourism and rise in sea level. As a consequence, the most important measures for the resilience of the North Aegean Region against climate change are the ones related to the preparation of strategic master plans for flood protection projects.


Author(s):  
Partha Sarathi Datta

In many parts of the world, freshwater crisis is largely due to increasing water consumption and pollution by rapidly growing population and aspirations for economic development, but, ascribed usually to the climate. However, limited understanding and knowledge gaps in the factors controlling climate and uncertainties in the climate models are unable to assess the probable impacts on water availability in tropical regions. In this context, review of ensemble models on δ18O and δD in rainfall and groundwater, 3H- and 14C- ages of groundwater and 14C- age of lakes sediments helped to reconstruct palaeoclimate and long-term recharge in the North-west India; and predict future groundwater challenge. The annual mean temperature trend indicates both warming/cooling in different parts of India in the past and during 1901–2010. Neither the GCMs (Global Climate Models) nor the observational record indicates any significant change/increase in temperature and rainfall over the last century, and climate change during the last 1200 yrs BP. In much of the North-West region, deep groundwater renewal occurred from past humid climate, and shallow groundwater renewal from limited modern recharge over the past decades. To make water management to be more responsive to climate change, the gaps in the science of climate change need to be bridged.


Sign in / Sign up

Export Citation Format

Share Document