scholarly journals Ocean surface and bottom water conditions, iceberg drift and sediment transport on the North Iceland margin during MIS 3 and MIS 2

2021 ◽  
Vol 252 ◽  
pp. 106722
Author(s):  
J.T. Andrews ◽  
L. Smik ◽  
S.T. Belt ◽  
M.-A. Sicre ◽  
I.N. McCave
2017 ◽  
Author(s):  
Carlos A. Alvarez Zarikian ◽  
◽  
Chimnaz Nadiri ◽  
Montserrat Alonso-Garcia ◽  
Loren Petruny ◽  
...  

2020 ◽  
pp. 1-19
Author(s):  
Vladimir Sheinkman ◽  
Sergey Sedov ◽  
Lyudmila S. Shumilovskikh ◽  
Elena Bezrukova ◽  
Dmitriy Dobrynin ◽  
...  

Abstract Recent revision of the Pleistocene glaciation boundaries in northern Eurasia has encouraged the search for nonglacial geological records of the environmental history of northern West Siberia. We studied an alluvial paleosol-sedimentary sequence of the high terrace of the Vakh River (middle Ob basin) to extract the indicators of environmental change since Marine Oxygen Isotope Stage (MIS) 6. Two levels of the buried paleosols are attributed to MIS 5 and MIS 3, as evidenced by U/Th and radiocarbon dates. Palynological and pedogenetic characteristics of the lower pedocomplex recorded the climate fluctuations during MIS 5, from the Picea-Larix taiga environment during MIS 5e to the establishment of the tundra-steppe environment due to the cooling of MIS 5d or MIS 5b and partial recovery of boreal forests with Picea and Pinus in MIS 5c or MIS 5a. The upper paleosol level shows signs of cryogenic hydromorphic pedogenesis corresponding to the tundra landscape, with permafrost during MIS 3. Boulders incorporated in a laminated alluvial deposit between the paleosols are dropstones brought from the Enisei valley by ice rafting during the cold MIS 4. An abundance of eolian morphostructures on quartz grains from the sediments that overly the upper paleosol suggests a cold, dry, and windy environment during the MIS 2 cryochron.


2017 ◽  
Vol 154 ◽  
pp. 33-43 ◽  
Author(s):  
Sunghan Kim ◽  
Boo-Keun Khim ◽  
Ken Ikehara ◽  
Takuya Itaki ◽  
Akihiko Shibahara ◽  
...  

2021 ◽  
Vol 9 (11) ◽  
pp. 1258
Author(s):  
Viet Thanh Nguyen ◽  
Minh Tuan Vu ◽  
Chi Zhang

Two-dimensional models of large spatial domain including Cua Lo and Cua Hoi estuaries in Nghe An province, Vietnam, were established, calibrated, and verified with the observed data of tidal level, wave height, wave period, wave direction, and suspended sediment concentration. The model was then applied to investigate the hydrodynamics, cohesive sediment transport, and the morphodynamics feedbacks between two estuaries. Results reveal opposite patterns of nearshore currents affected by monsoons, which flow from the north to the south during the northeast (NE) monsoon and from the south to the north during the southeast (SE) monsoon. The spectral wave model results indicate that wave climate is the main control of the sediment transport in the study area. In the NE monsoon, sediment from Cua Lo port transported to the south generates the sand bar in the northern bank of the Cua Hoi estuary, while sediment from Cua Hoi cannot be carried to the Cua Lo estuary due to the presence of Hon Ngu Island and Lan Chau headland. As a result, the longshore sediment transport from the Cua Hoi estuary to the Cua Lo estuary is reduced and interrupted. The growth and degradation of the sand bars at the Cua Hoi estuary have a great influence on the stability of the navigation channel to Ben Thuy port as well as flood drainage of Lam River.


2020 ◽  
Author(s):  
Eugene G Morozov ◽  
Dmitry I. Frey ◽  
Roman Y. Tarakanov

Abstract We analyze measurements of bottom currents and thermohaline properties of water north of the Vema Channel with the goal to find pathway continuations of Antarctic Bottom Water flow from the Vema Channel into the Brazil Basin. The analysis is based on CTD/LADCP casts north of the Vema Channel. The flow in the deep Vema Channel consists of two branches. The deepest current flows along the bottom in the center of the channel and the other branch flows above the western wall of the channel. We found two smaller channels of the northern continuation of the deeper bottom flow. These flows become weak and almost disappear at a latitude of 25°30’S. The upper current flows at a depth of 4100-4200 m along the continental slope. We traced this current up to 24°S over a distance exceeding 250 km. This branch transports bottom water that eventually fills the deep basins of the North Atlantic.


2021 ◽  
Vol 233 ◽  
pp. 03035
Author(s):  
Zhuzhu Yu ◽  
Zhiguo He ◽  
Li Li ◽  
Taoyan Ye ◽  
Yuezhang Xia

Based on FVCOM hydrodynamic numerical model and coastline topographic data in 2013, a three-dimensional numerical model of fine sediment transport in Hangzhou Bay has been established to explore the water and sediment exchange mechanism between Hangzhou Bay and the open sea at different typical sections. The results of validation with measured and satellite retrieved data show that the model can well simulate the process of water and sediment movement in Hangzhou Bay. Compared with the calculation results of the coastline topographic data of Hangzhou Bay in 1974 and 2020, the influence mechanism of shoreline change on the water and sediment exchange mechanism between Hangzhou Bay and the open sea has been studied. The results show that the sediment transport inside and outside the Hangzhou Bay is generally in the pattern of north-inflow and south-discharge. Compared with the coastline in 1974, the sediment transport from Yangshan port in the north of Hangzhou Bay and Zhoushan Islands in the middle of Hangzhou Bay increases when the coastline is pushed into the bay in 2020, while the outward sediment transport from Jintang Channel in the South decreases. The overall trend features that the sediment transport into the bay increases, with the bay mouth silting. In the three sections extending from Hangzhou Bay to the open sea, the inflowing water and sediment of the horizontal section on the north side is decreasing, while the discharged sediment from the south side and the inflowing water and discharged sediment from the vertical section at the east side are increasing.


2019 ◽  
Vol 47 (2) ◽  
pp. 246-265
Author(s):  
A. K. Ambrosimov ◽  
N. A. Diansky ◽  
A. A. Kluvitkin ◽  
V. A. Melnikov

Based on time series of near-bottom current velocities and temperatures obtained in the period June, 2016 to July, 2017, at three points in the Atlantic Subarctic Front, along with the use of multi-year (since 1993 up to now) satellite ocean surface sounding data, multi-scale fluctuations of ocean surface and near-bottom flows over the western and eastern flanks of the Reykjanes ridge, as well as near Hatton Rise, on the Rokoll plateau, are studied. Hydrological profiles were carried out from the ocean surface to the bottom with readings every 10 m, when setting and retrieving the buoy stations. Using data from the Bank of hydrological stations (WOD13), SST satellite arrays (Pathfinder), long-term sea level and geostrophic velocities time series (AVISO), and bottom topography (model ETOPO-1), features of longterm cyclical fluctuations of SST, sea level, geostrophic currents on the ocean surface were defined in the sub-polar North Atlantic. It is shown that, in accordance with the large-scale thermohaline structure of the Subarctic front, two branches of the North Atlantic Current are detected on the ocean surface.One is directed from the Hatton towards the Icelandic-Faroese Rise, and the other – alomg the western flank of the Reykjanes Ridge toward Iceland. For the first branch, which is the main continuation of the North Atlantic Current, the average (for 25 years) water drift at a speed of 9.1±0.1 cm/s is determined to the northeast. The second branch, which forms the eastern part of the Subarctic cyclonic gyre, has the average water drift at a speed of 4.0±0.1 cm/s is directed north-northeast, along the western flank of the Reykjanes Ridge. In the intermediate waters of the frontal zone, an average water flow is observed at a speed of 2.7±0.1 cm/s to the north-northeast, along the eastern slope of the Reykjanes ridge.Due to the multy-scale components of the total variability, the average kinetic energy densities(KED) of total currents (109, 45, 97, (±3) erg/cm3, at station points from east to west) are much greater than the mean drift KED. The near-bottom flows on the Reykjanes ridge flanks are opposite to the direction of the North Atlantic Current. Outside the Subarctic gyre, the direction of average transport is maintained from the ocean surface to the bottom. The average (per year) KED of near-bottom currents are 31, 143, 27 (±3 erg/cm3), for three stations from east to west, respectively. In the intermediate waters of the frontal zone, above the eastern slope of the Reykjanes Ridge, there is a powerful reverse (relative to the North Atlantic Current) near-bottom water flow to the south-west, with a high average speed of ~ 15 cm/s. The KED of the currents during the year varies widely from zero to ~ 600 erg/cm3. The overall variability is due to cyclical variations and intermittency (“flashes”) of currents. Perennial cycles, seasonal variations, synoptic fluctuations with periods in the range of 30–300 days, as well as inertial oscillations and semi-diurnal tidal waves are distinguished. The intermittency of oscillations is partly due to changes in low-frequency flows, which can lead to a dopler frequency shift in the cyclic components of the spectrum. The amplitude of temperature fluctuations in the bottom layer for the year was (0.07–0.10) ± 0.01°C by the standard deviation. The seasonal changes of the bottom temperature are not detected. However, a linear trend with a warming of ~ (0.10–0.15) ± 0.01°С per year is noticeable.


Sign in / Sign up

Export Citation Format

Share Document