Drying kinetics and effective water diffusivities in olive stone and olive-tree pruning

2019 ◽  
Vol 132 ◽  
pp. 911-920 ◽  
Author(s):  
Manuel Cuevas ◽  
María Lourdes Martínez-Cartas ◽  
Luis Pérez-Villarejo ◽  
Lucía Hernández ◽  
Juan Francisco García-Martín ◽  
...  
Foods ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1299
Author(s):  
Pablo Doménech ◽  
Aleta Duque ◽  
Isabel Higueras ◽  
José Luis Fernández ◽  
Paloma Manzanares

Olive trees constitute one of the largest agroindustries in the Mediterranean area, and their cultivation generates a diverse pool of biomass by-products such as olive tree pruning (OTP), olive leaves (OL), olive stone (OS), and extracted olive pomace (EOP). These lignocellulosic materials have varying compositions and potential utilization strategies within a biorefinery context. The aim of this work was to carry out an integral analysis of the aqueous extractives fraction of these biomasses. Several analytical methods were applied in order to fully characterize this fraction to varying extents: a mass closure of >80% was reached for EOP, >76% for OTP, >65% for OS, and >52% for OL. Among the compounds detected, xylooligosaccharides, mannitol, 3,4-dihydroxyphenylglycol, and hydroxytyrosol were noted as potential enhancers of the valorization of said by-products. The extraction of these compounds is expected to be more favorable for OTP, OL, and EOP, given their high extractives content, and is compatible with other utilization strategies such as the bioconversion of the lignocellulosic fraction into biofuels and bioproducts.


2015 ◽  
Vol 72 (5) ◽  
pp. 711-720 ◽  
Author(s):  
G. Blázquez ◽  
A. Ronda ◽  
M. A. Martín-Lara ◽  
A. Pérez ◽  
M. Calero

Batch isotherm studies were carried out on a laboratory scale: (i) to investigate the effectiveness to remove lead of two wastes (olive stone (OS) and olive tree pruning (OTP)), untreated and chemically treated; and (ii) to examine the applicability of various adsorption isotherms to fit the experimental data. Results from tests were analyzed using seven equilibrium isotherm correlations (Langmuir, Freundlich, Dubinin–Radushkevich, Temkin, Redlich–Peterson, Sips, and Toth equations). The sum of the squares of the errors was determined for each isotherm and the Langmuir equation provided the best fit. Chemical treatments increased the biosorption properties of these materials. The maximum biosorption capacities were: 6.33, 49.13, 14.83, and 38.93 mg g−1 for untreated OS, HNO3-OS, H2SO4-OS, and NaOH-OS, respectively, and 26.72, 86.40, 72.78, and 123.80 mg g−1 for untreated OTP, HNO3-OTP, H2SO4-OTP, and NaOH-OTP, respectively. Finally, the loss of mass for each waste (13.9, 14.3, and 36.8% for HNO3-OS, H2SO4-OS, and NaOH-OS and 35.1, 27.5, and 46.7% for HNO3-OTP, H2SO4-OTP, and NaOH-OTP, respectively) was taken into account and an effectiveness coefficient was determined for each adsorbent material.


Foods ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 788
Author(s):  
João Paulo de Lima Ferreira ◽  
Alexandre José de Melo Queiroz ◽  
Rossana Maria Feitosa de Figueirêdo ◽  
Wilton Pereira da Silva ◽  
Josivanda Palmeira Gomes ◽  
...  

The residue generated from the processing of Tacinga inamoena (cumbeba) fruit pulp represents a large amount of material that is discarded without proper application. Despite that, it is a raw material that is source of ascorbic acid, carotenoids and phenolic compounds, which are valued in nutraceutical diets for allegedly combating free radicals generated in metabolism. This research paper presents a study focused on the mathematical modeling of drying kinetics and the effect of the process on the level of bioactive of cumbeba residue. The experiments of cumbeba residue drying (untreated or whole residue (WR), crushed residue (CR) and residue in the form of foam (FR)) were carried out in a fixed-bed dryer at four air temperatures (50, 60, 70 and 80 °C). Effective water diffusivity (Deff) was determined by the inverse method and its dependence on temperature was described by an Arrhenius-type equation. It was observed that, regardless of the type of pretreatment, the increase in air temperature resulted in higher rate of water removal. The Midilli model showed better simulation of cumbeba residue drying kinetics than the other models tested within the experimental temperature range studied. Effective water diffusivity (Deff) ranged from 6.4890 to 11.1900 × 10−6 m2/s, 2.9285 to 12.754 × 10−9 m2/s and 1.5393 × 10−8 to 12.4270 × 10−6 m2/s with activation energy of 22.3078, 46.7115 and 58.0736 kJ/mol within the temperature range of 50–80 °C obtained for the whole cumbeba, crushed cumbeba and cumbeba residue in the form of foam, respectively. In relation to bioactive compounds, it was observed that for a fixed temperature the whole residue had higher retention of bioactive compounds, especially phenolic compounds, whereas the crushed residue and the residue in the form of foam had intermediate and lower levels, respectively. This study provides evidence that cumbeba residue in its whole form can be used for the recovery of natural antioxidant bioactive compounds, mainly phenolic compounds, with the possibility of application in the food and pharmaceutical industries.


2021 ◽  
Vol 11 (14) ◽  
pp. 6445
Author(s):  
David Ibarra ◽  
Raquel Martín-Sampedro ◽  
Bernd Wicklein ◽  
Úrsula Fillat ◽  
María E. Eugenio

Motivated by the negative impact of fossil fuel consumption on the environment, the need arises to produce materials and energy from renewable sources. Cellulose, the main biopolymer on Earth, plays a key role in this context, serving as a platform for the development of biofuels, chemicals and novel materials. Among the latter, micro- and nanocellulose have been receiving increasing attention in the last few years. Their many attractive properties, i.e., thermal stability, high mechanical resistance, barrier properties, lightweight, optical transparency and ease of chemical modification, allow their use in a wide range of applications, such as paper or polymer reinforcement, packaging, construction, membranes, bioplastics, bioengineering, optics and electronics. In view of the increasing demand for traditional wood pulp (e.g., obtained from eucalypt, birch, pine, spruce) for micro/nanocellulose production, dedicated crops and agricultural residues can be interesting as raw materials for this purpose. This work aims at achieving microfibrillated cellulose production from fast-growing poplar and olive tree pruning using physical pretreatment (PFI refining) before the microfibrillation stage. Both raw materials yielded microfibrillated cellulose with similar properties to that obtained from a commercial industrial eucalypt pulp, producing films with high mechanical properties and low wettability. According to these properties, different applications for cellulose microfibers suspensions and films are discussed.


Foods ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 647
Author(s):  
Cristina M. González ◽  
Rebeca Gil ◽  
Gemma Moraga ◽  
Alejandra Salvador

Persimmon (Diospyros kaki L.f.) crop has markedly increased in Spain, and “Rojo Brillante” persimmon is the main cultivated variety. This astringent cultivar requires de-astringency treatment before commercialization, which may involve an extra cost. Its short commercial season implies handling large volumes of fruits with consequent postharvest losses. Therefore, the development of derived added-value products is of much interest. In this study, astringent and non-astringent “Rojo Brillante” persimmons were dehydrated by following a natural drying method used in Asia. The drying kinetics and physico-chemical properties were analyzed for 81 days. The results indicated subsequent reductions in weight, water content, and water activity throughout the drying process, and the equatorial diameter decreased. All the employed thin-layer mathematical models were suitable for representing the drying characteristics of both products with similar behavior. The effective water diffusivity values were 5.07 × 10−11 m2 s−1 and 6.07 × 10−11 m2 s−1 for astringent and non-astringent persimmon samples, respectively. The drying treatment significantly decreased the soluble tannins content, and the astringent samples obtained similar values to those obtained for the non-astringent samples in 20 days. The external and internal flesh of the astringent fruit remained orange through the drying period, while brown coloration in the non-astringent fruit was observed after 57 drying days. Therefore, prior de-astringency treatment would not be necessary.


2017 ◽  
Vol 105 ◽  
pp. 238-251 ◽  
Author(s):  
José I. Santos ◽  
Úrsula Fillat ◽  
Raquel Martín-Sampedro ◽  
María E. Eugenio ◽  
María J. Negro ◽  
...  

2021 ◽  
pp. 1-13
Author(s):  
Imen Landolsi ◽  
Narjes Rjiba ◽  
Mohamed Hamdaoui ◽  
Omar Anis Harzallah ◽  
Chedly Boudokhane

2019 ◽  
Vol 7 (1) ◽  
pp. 102830 ◽  
Author(s):  
Arminda Mamaní ◽  
María Fabiana Sardella ◽  
Marianela Giménez ◽  
Cristina Deiana

Fuel ◽  
2020 ◽  
Vol 277 ◽  
pp. 118171 ◽  
Author(s):  
José Miguel Oliva ◽  
María José Negro ◽  
Cristina Álvarez ◽  
Paloma Manzanares ◽  
Antonio D. Moreno
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document