scholarly journals An investigation on the chemical stability and a novel strategy for long-term stabilization of diphenylalanine nanostructures in aqueous solution

2015 ◽  
Vol 5 ◽  
pp. 11-19 ◽  
Author(s):  
H. Nezammahalleh ◽  
G. Amoabediny ◽  
F. Kashanian ◽  
M.H. Foroughi Moghaddam
2021 ◽  
pp. jnnp-2020-324005
Author(s):  
Klaus Fassbender ◽  
Fatma Merzou ◽  
Martin Lesmeister ◽  
Silke Walter ◽  
Iris Quasar Grunwald ◽  
...  

Since its first introduction in clinical practice in 2008, the concept of mobile stroke unit enabling prehospital stroke treatment has rapidly expanded worldwide. This review summarises current knowledge in this young field of stroke research, discussing topics such as benefits in reduction of delay before treatment, vascular imaging-based triage of patients with large-vessel occlusion in the field, differential blood pressure management or prehospital antagonisation of anticoagulants. However, before mobile stroke units can become routine, several questions remain to be answered. Current research, therefore, focuses on safety, long-term medical benefit, best setting and cost-efficiency as crucial determinants for the sustainability of this novel strategy of acute stroke management.


2020 ◽  
pp. 088532822097735
Author(s):  
Fedra P Zaribaf ◽  
Harinderjit S Gill ◽  
Elise C Pegg

Ultra-high molecular weight polyethylene (UHMWPE) can be made radiopaque for medical imaging applications through the diffusion of an iodised oil-based contrast agent (Lipiodol Ultra Fluid). A similar process is used for Vitamin E incorporated polyethylene which provides antioxidant properties. This study aimed to investigate the critical long-term properties of oil-infused medical polyethylene after 4 weeks of accelerated thermal ageing. Samples treated with an oil (Vitamin E or Lipiodol) had a higher oxidation stability than currently used medical grade polyethylene, indicated by a smaller increase in oxidation index after ageing (Vitamin E + 36%, Lipiodol +40%, Untreated +136%, Thermally treated +164%). The tensile properties of oil treated polyethylene after ageing were significantly higher than the Untreated and Thermally treated controls (p<0.05) indicating less mechanical degradation. There was also no alteration in the percentage crystallinity of oil treated samples after ageing, though the radiopacity of the Lipiodol treated samples reduced by 54% after ageing. The leaching of oil with time was also investigated; the leaching of Lipiodol and Vitamin E followed the same trend and reached a steady state by two weeks. Overall, it can be concluded that the diffusion of an oil-based fluid into polyethylene not only increases the oxidative and chemical stability of polyethylene but also adds additional functionality (e.g. radiopacity) providing a more suitable material for long–term medical applications.


Materials ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1808
Author(s):  
Yali Zhou ◽  
Zhenyao Han ◽  
Chunlin He ◽  
Qin Feng ◽  
Kaituo Wang ◽  
...  

Nanobubbles have many potential applications depending on their types. The long-term stability of different gas nanobubbles is necessary to be studied considering their applications. In the present study, five kinds of nanobubbles (N2, O2, Ar + 8%H2, air and CO2) in deionized water and a salt aqueous solution were prepared by the hydrodynamic cavitation method. The mean size and zeta potential of the nanobubbles were measured by a light scattering system, while the pH and Eh of the nanobubble suspensions were measured as a function of time. The nanobubble stability was predicted and discussed by the total potential energies between two bubbles by the extended Derjaguin–Landau–Verwey–Overbeek (DLVO) theory. The nanobubbles, except CO2, in deionized water showed a long-term stability for 60 days, while they were not stable in the 1 mM (milli mol/L) salt aqueous solution. During the 60 days, the bubble size gradually increased and decreased in deionized water. This size change was discussed by the Ostwald ripening effect coupled with the bubble interaction evaluated by the extended DLVO theory. On the other hand, CO2 nanobubbles in deionized water were not stable and disappeared after 5 days, while the CO2 nanobubbles in 1 mM of NaCl and CaCl2 aqueous solution became stable for 2 weeks. The floating and disappearing phenomena of nanobubbles were estimated and discussed by calculating the relationship between the terminal velocity of the floating bubble and bubble size.


Author(s):  
Bhuvaneswari M. Sivakumar ◽  
Venkateshkumar Prabhakaran ◽  
Kaining Duanmu ◽  
Edwin Thomsen ◽  
Brian Berland ◽  
...  

2012 ◽  
Vol 31 (4-5) ◽  
pp. 451-458 ◽  
Author(s):  
S. Fujieda ◽  
K. Shinoda ◽  
T. Inanaga ◽  
M. Abumiya ◽  
S. Suzuki

AbstractA novel process for preparing scorodite particles with a diameter of approximately 20 µm from Fe(II) and As(V) in aqueous solution has been developed by DOWA Metals and Mining. In the present study, the dissolution characteristics of iron and arsenic from the scorodite particles synthesized by this process have been investigated under different conditions. The results show that the concentration of arsenic dissolved from the particles in aqueous solution is very low, but it has a complicated dependence on the temperature and pH of the solution. Transmission electron microscopy (TEM) with an energy dispersive X-ray spectrometer (EDS) was used to analyze the morphology, structure, and composition of the scorodite particles. The results indicate that the scorodite particles exhibit a nearly octahedral shape with planes composed of almost (111) planes in the orthorhombic structure. The concentration of iron at the surface of the particles is higher than that of iron inside of the particles. This characteristic morphology, along with the minimal surface defects of the scorodite particles, is considered to be responsible for the low dissolution of arsenic from the particles in aqueous solution. Atmospheric temperature and solution conditions were also found to be important for the safe, long-term storage of arsenic using scorodite particles.


Author(s):  
Alec T. Nabb ◽  
Marvin Bentley

Neurons are polarized cells of extreme scale and compartmentalization. To fulfill their role in electrochemical signaling, axons must maintain a specific complement of membrane proteins. Despite being subject of considerable attention, the trafficking pathway of axonal membrane proteins is not well understood. Two pathways, direct delivery and transcytosis, have been proposed. Previous studies reached contradictory conclusions about which of these mediates delivery of axonal membrane proteins to their destination, in part because they evaluated long-term distribution changes and not vesicle transport. We developed a novel strategy to selectively label vesicles in different trafficking pathways and determined the trafficking of two canonical axonal membrane proteins, NgCAM and VAMP2. Results from detailed quantitative analyses of transporting vesicles differed substantially from previous studies and found that axonal membrane proteins overwhelmingly undergo direct delivery. Transcytosis plays only a minor role in axonal delivery of these proteins. In addition, we identified a novel pathway by which wayward axonal proteins that reach the dendritic plasma membrane are targeted to lysosomes. These results redefine how axonal proteins achieve their polarized distribution, a crucial requirement for elucidating the underlying molecular mechanisms. [Media: see text] [Media: see text] [Media: see text] [Media: see text]


2003 ◽  
Vol 264 (1-2) ◽  
pp. 57-72 ◽  
Author(s):  
Llamil Ruiz ◽  
Nuria Reyes ◽  
Ladys Duany ◽  
Abrisleyda Franco ◽  
Kethia Aroche ◽  
...  

MRS Advances ◽  
2016 ◽  
Vol 1 (62) ◽  
pp. 4163-4168
Author(s):  
E. González-Robles ◽  
M. Herm ◽  
V. Montoya ◽  
N. Müller ◽  
B. Kienzler ◽  
...  

ABSTRACTThe long-term behavior of the UO2 fuel matrix under conditions of the Belgian “Supercontainer design” was investigated by dissolution tests of high burn-up spent nuclear fuel (SNF) in high alkaline solution under 40 bar of (Ar + 8%H2) atmosphere. Four fragments of SNF, obtained from a pellet previously leached during two years, were exposed to young cement water with Ca (YCWCa) under 3.2 bar H2 partial pressure in four single/independent autoclave experiments for a period of 59, 182, 252 and 341 days, respectively. After a decrease of the concentration of dissolved 238U, which is associated with a reduction of U(VI) to U(IV), the concentration of 238U in solution is constant in the experiments running for 252 and 341 days. These observations indicate an inhibition of the matrix dissolution due to the presence of H2. A slight increase in the concentration of 90Sr and 137Cs in the aqueous solution indicates that there is still dissolution of the grain boundaries. These findings are similar to those reported for spent nuclear fuel corrosion in synthetic near neutral pH solutions.


Sign in / Sign up

Export Citation Format

Share Document